Category Archives: Other Networking Products

Posts about other networking products that work well with Ayrstone products

Sensor Networks 2 – LoRAWAN, Sigfox, RPMA, etc. – low-power WAN technologies for agriculture

There is a lot of talk about these technologies – every time I turn around it seems like I’m reading about or hearing an analyst who is saying that these technologies will revolutionize farming with “Internet of Things” devices. And they are exciting.

The attraction for carriers to these technologies is that they can be added easily to an existing cellular (or other wireless) network, using existing backhaul, billing, and other infrastructure. Some of the technologies, like LTE-NB and Cat M1 (which Verizon and AT&T are reportedly testing) just require changes to the LTE station firmware (supposedly).

The appeal of all cellular technologies for solution providers, of course, is that they are easy to install – as long as there is a signal, they just put in an appropriate client radio and a SIM card, and the device starts sending data to a server.

The problem, of course, is that rural cellular networks don’t offer any data services to large parts of the rural U.S. today, and there are areas without even voice service. So there’s a significant investment needed on their part to make these technologies usable across rural America.

But that’s the problem: if you’re the company investing in deploying these technologies, you want to put them where the greatest concentration of potential users are, and that’s in cities. Every power meter, gas meter, water meter, parking meter, flow meter, streetlight, traffic sensor, etc. will be able to connect to the network – there are literally hundreds or thousands of potential connectors per acre in the city, vs. one to ten per acre in the country (except, perhaps, Napa). So, if I’m a shareholder for a cellular company, I do NOT want to hear they are building out rural infrastructure for LoRA or something else – I want them to concentrate in the cities, where those networks are most profitable.

Now, rural WISPs, telephone co-ops, etc. may choose to piggy-back one or more of these technologies on their networks to server local customers. Which WISPs? Which co-ops? Which technology? Your guess is as good as mine, although it is worth mentioning that Senet is a company that’s rolling out LoRA in a few rural areas, for instance. However, their coverage map makes it clear they are concentrating on cities, towns, and some farming areas in Missouri, Arkansas, and California.

Note also that, where there is connectivity, the carriers will want to charge a monthly fee for each device – that’s OK if you have a few devices, but, eventually, believe it or not, you will want to have hundreds of devices on your farm. I am already hearing from growers in specialty crops who have monthly cellular bills of over $1000.

Bottom line: I don’t see these technologies providing any real help to the majority of U.S. growers for the next 5 years, if ever. They will show up in some places as a local option, but it doesn’t pencil out on a national scale.

WiFi LogoWhat does make sense is to put some sort of high-bandwidth wireless network on the farm/ranch (e.g. WiFi of some sort, like AyrMesh) and then, as needed, use WiFi-enabled sensors or run local 802.15.4 networks (e.g. Zigbee, 6LowPAN, Threads, etc.) in the fields for sensor connectivity. The sensors are cheaper, the networks are controlled by the growers, so they cover what needs to be covered, and, since it’s all on the farmer’s LAN, the data can easily be directed to a local server and needn’t leave the farm.

(Note: I’m not actually crazy about ZigBee, but it’s the best and cheapest we have available right now. I’m hoping for better in the future: something like Google’s Threads, but at 900 MHz.)

More to come on this subject…

The Internet of Things (IoT) on the Farm – Part 3

In Part 1 and Part 2 of this series, as well as the associated posts on the ezeio and sensor networks, I have focused primarily on IoT hardware: the part you can see and touch, and that touches your farm.

Firmware

However, in many ways, software is much more important than the hardware. As I observed in Part 2, modern technology products are remarkably similar: a CPU, some memory, some storage, and some peripherals. If the peripheral is a relay, you have a device that can turn things on and off (like a remote-controlled power plug, or a WebRelay). If the peripheral is an “Analog to Digital Converter” (ADC) then the device can monitor sensors and report the values from those sensors. Some devices like the ezeio have both (and even more).

Of course, nothing happens on these devices without software. And software is involved in at least two important places: the software that is running on the devices themselves, sometimes referred to as “firmware,” and the software running on back-end computers (local or cloud servers, PCs, or even your phone or tablet) that is used to store and interpret the results from the devices.

These two pieces of software have to be able to “talk” with each other, and we’ll assume* they do so over your network, with the device connected to your AyrMesh network and the “back-end” software on some sort of cloud-based server on the Internet. Note that the “back-end” software COULD reside on a server on your property if you are using AyrMesh.

What the devices themselves do depends on both the hardware and the firmware on the device – in most cases, that firmware will collect readings from the sensors, upload that information to the back-end server, and, if appropriate, take commands from that server and take action, from turning on a light to starting a pump or a grain auger.

In most cases, that firmware is a closed system – there is no way for you to collect data off or communicate with the device directly, or to direct it to a location other than the vendor’s cloud server. It doesn’t have to be that way, but (1) it’s simpler, and (2) that gives the vendor much more control over the data.

The back-end server usually stores the data and presents it to you (either through a web page or a mobile app, or both). What data you see, how you see it, and what you can do with it depends on that back-end software. It may just present a time series of observations in the field as a graph, it may let you set up simple or complex rules (if the soil moisture is at this level or below, turn on the irrigation system), and it be able to present data in many useful ways (different graphs, superimposed on maps, etc.) and enable very complex control of your farm machinery.

The back-end server is usually a closed system, as well – most times it can only accept data from the vendor’s own devices. Sometimes it may have an “Application Program Interface” (API) that allows it to exchange data with other programs. It may also have the ability to upload data into it for tracking and presentation, or to download data from it for importation into another program. These APIs and import/export mechanisms may be very good, well-written, and well-documented, making them extremely useful. Or they may not. APIs are generally only useful for programmers – it takes code to make them work – but well-written and well-documented APIs can enable even relatively inexperienced programmers to create custom programs to do exactly what you want, and that can be extremely valuable.

On the other hand, back-end software without good APIs and/or import/export features is a “closed box” – what you get is just what you get, and there’s no way to get more or less. Understand, of course, that a closed system like this may do EXACTLY what you need, but, if your needs change, it may suddenly become useless.

Of course, there is also the issue of your data and what happens to it. The terms and conditions for the service may be very clear about what happens to your data, or they may be quite vague. Many of the data services will anonymize and sell the data that you store on their servers (the most unethical may not even anonymize it – beware!). This may concern you or not, depending on the nature of the data and how closely tied to your operation it is. For instance, it is generally valuable to share weather data – if your neighbors do so as well, you can gain a much better insight into the local weather patterns. On the other hand, you may not want to share geo-referenced harvest data – that tells too many people exactly what your land and your harvest is worth. “Fuzzing up” the geo-reference, however, might make it a lot more shareable.

When you are considering new devices to collect data and/or control machinery on the farm, these distinctions between “open” and “closed” systems, and the availability if good, usable APIs may seem abstract. Salespeople for “closed” systems will do their best to minimize the importance of these issues, but it’s absolutely critical. Openness in the device’s firmware means that the devices can be re-purposed to work with another system if you don’t like the vendor’s services, and openness in the back-end database means you can easily get your data and move it where it can be combined with other data and used (e.g. providing it to your agronomist for analysis, or storing it in a system where it can be combined with other data for decision-making).

Being smart about buying new technology for your farm can save you a lot of money in the long term, and a lot of frustration in the short term. We’ll keep an eye out for and report on interesting products that help you on the farm using open technologies.

*some devices connect directly to the network using WiFi or Ethernet, and some devices will have low-power networking (e.g. Zigbee or Google Threads) that use a “gateway” device to connect them to your network (or directly to a public network via cellular or satellite). There are even some that don’t talk to the network at all, using either Bluetooth or an embedded WiFi server to communicate directly with your phone, tablet, or laptop. And, of course, there are still devices that use some sort of flash memory and “sneakernet” (taking the flash memory off the device and walking it to a computer).

Security and the IoT

Security_camAs you know, I think that the “Internet of Things” (IoT) has enormous potential for the farm. But we have all been recently reminded of the problems we are facing as BILLIONS of new devices come on to the Internet – Friday October 21, the IoT literally broke the Internet.

This event has been called the “Mirai botnet attack.” This is an extremely important event, because it used IoT devices to effectively bring the Internet to a stop for several hours on Friday, October 21. Even Ayrstone was affected: we use Zendesk for our customer support portal, and it was unavailable off and on on Friday.

This attack was innovative in two ways: first, it did not attack the affected sites directly, but rather attacked the Domain Name Servers (DNS, the servers that turn domain names like ayrstone.com into IP addresses like 104.24.21.15) of Dyn.com, making a huge number of websites, including Zendesk, Twitter, and others unreachable, even though they were working just fine.

But the most important innovation was the way the attack was done – using a Distributed Denial of Service (DDoS) attack from IoT devices. DDoS attacks work by sending a huge amount of data to a server from a large number of devices on the Internet, overwhelming the server and causing it to fail. Up until now, the “botnets,” as the devices sending the data are known, have mostly been personal computers infected with viruses that allow a remote user to control them and cause them to send out streams of data to the target server.

As I mentioned, however, this attack was different, because it used IoT devices – IP cameras, routers, wireless networking devices, and other little devices that people don’t see as being “computers.” But your router or IP camera has a lot more computing power than the powerful desktop computer you had just a few years ago.

Hackers were able to access these devices and install “botnet” software on them because – and this is THE IMPORTANT THING – the passwords were NEVER CHANGED from the defaults. For instance, many devices come with a default username of “admin” and a default password of “admin” or “password.” If those are not changed and they are exposed to the Internet, they are an open invitation to hackers.

Now, most of the devices on your network are NOT currently exposed to the Internet – they are safely hidden from the Internet by your router’s NAT firewall. But it is still important to change the default password on devices, and, if you have “port-forwarded” to any devices to make it accessible via the Internet, it is DOUBLY important to make sure it has a STRONG password to protect it.

Ayrstone products, of course, are protected because the username and password for each device is set from AyrMesh.com. The only way an AyrMesh device can have the default username and password is if you don’t have an AyrMesh.com account, and we regularly disable devices that are not checking into an active account. However, even at that, AyrMesh devices should always be used behind a router’s firewall and not exposed to the Internet.

These devices are incredibly useful when used properly, but you have to take some minimal precautions to keep them safe. More information about the Mirai botnet attack and security of IoT devices can be found in this article and elsewhere.

This attack is a good reminder of three things:

  1. Make sure you always use good passwords (long, not a quotation or word) on ALL devices and keep those passwords secret,
  2. Don’t expose devices to the Internet unless you have to, and
  3. Purchase networking/IoT products from reliable vendors who can update the firmware to close vulnerabilities, preferably automatically and over the network. If not, make they make new firmware available to close holes as they are discovered, and install it regularly.

AyrMesh devices have firmware that is updated over the network. We issue several updates per year, and you needn’t do a thing – they happen automatically.

If you have any questions, of course, just let us know – [email protected]

 

Welcome Eero and Google to the world of Mesh

eerogoogle_wifiSince we started marketing the AyrMesh system five years ago, we have gotten inquiries from folks who have large houses, offices, and small hotels/motels – can AyrMesh work indoors? The answer, of course, is that it can work, but it’s not optimal for a number of reasons, and we do not recommend it. AyrMesh is designed for outdoor use, mainly in rural areas.

We have been able to recommend the fine Open-Mesh products for indoor and urban outdoor use, but some new products have recently entered the market.

Eero was the first in this space, with a very nice-looking product and very good technical specifications. Unlike Open-Mesh, they do not have any way to mount their units outdoors, and they only offer one model (available in a 1-, 2-, or 3-pack).

Then, this week, Google announced the new Google WiFi product, utilizing a very similar approach of very nice-looking indoor meshing access points for larger houses. The Google WiFi products will be available in November, but they can be pre-ordered.

open-meshOpen-Mesh uses their Cloudtrax website and apps to control their access points; we have used Open-Mesh here in the Ayrstone lab for years and found it to be excellent. It’s a fair bit more complicated than AyrMesh, but it has the more “commercial” features you might want for a business or a motel, and the more complex features are easily ignored for a home setup.

It’s worth mentioning that there have long been WiFi Repeaters (also known as “boosters” and “extenders”) that connect to your WiFi router and create a new WiFi signal, and devices like the Apple Airport routers that use “Wireless Distribution System” (WDS). Although a single repeater can work well, and three Apple Airport routers using WDS (one connected to the Internet and two “extenders”) can work, they don’t have the routing “smarts” of a real mesh network, and they can cause more problems than they solve. For a large house, a real WiFi meshing product like these will provide much better results without running Ethernet cables… of course, for the absolute best WiFi, there is no substitute for just running Ethernet and putting separate Access Points in each location you need WiFi. If you were clever enough to run Ethernet to the far reaches of your house before the drywall, all you have to do is plug in some dumb access points in the Ethernet – no need to mess with the indoor mesh.

The new Eero and Google WiFi products use apps to configure and control the network – I don’t know if there is a website option available, but I get the impression that the apps are the only way to control them. I don’t know about you, but my poor phone is “full” of apps, and I really don’t want another one.

So my own view is that these new players are not quite as good as what already exists in Open-Mesh, but, of course, your mileage may vary, Of course, they are being marketed like crazy, so you’re going to see them in the press all over the place.

What I think is important is that meshing WiFi is becoming mainstream, and, if you live in a large house, you don’t necessarily have to run Ethernet to get WiFi throughout the house.

Getting started with the IoT on the farm with ezeio

 

eze System

Courtesy of eze System

A few months ago, I was approached by the folks at eze System, who wanted to know if their ezeio product would work with AyrMesh to help farmers measure conditions on farms and control equipment.

ezeio-400px-300x239They were kind enough to send me one of the ezeio products so I could try it out. Insofar as it is a standard Ethernet (802.3) product, I had no doubt it would work perfectly with AyrMesh, and, of course, it did – I just connected it to an AyrMesh Receiver with an Ethernet cable and it appeared on my network.

What is cool about the ezeio is that it is a complete package – hardware, firmware, and back-end software – completely integrated and ready to plug in and go. It includes connection points for up to 4 analog inputs (configurable for 0-10V, 4-20mA current loop, S0-pulse, or simple on/off), Modbus devices, Microlan (1-wire) devices, and up to two relay outputs (up to 2 amps). This makes it a very versatile unit for both detecting and controlling things on the farm.

setup_smallI set mine up on a table to see how it worked. The good folks at eze System included a Microlan temperature probe, so I set up my unit with that connected to the Microlan connector and a couple of LEDs (with a battery) connected to one of the relay outputs.

loginI then went to their web-based dashboard and started setting things up. It’s pretty simple – you get a login on the dashboard, and you add your ezeio controller. You can then set up the inputs (in my case, the temperature probe) and outputs (the relay) and then set up rules to watch the inputs and take appropriate actions. If you want to see the details, I have put together a slide show for the curious so I don’t have to put it all here.

The bottom line is that I was able to quickly and easily set up a system that checked the temperature continuously and, when the temperature dropped below a certain level, lit up an LED. Big deal, I hear you say, BUT – it could easily have been starting a wind machine or an irrigation pump or some other machine, and it could have been triggered by a tank level switch or a soil moisture sensor or some other sensor or set of sensors. It also enables me to control those devices manually over the Internet, using a web browser, without having to “port forward” on my router.

The ezeio is a very powerful yet easy-to-use device which, in conjunction with the web service behind it, enables you to very easily set up monitoring and automation on your farm. For the do-it-yourselfer, it is a great way to get started on employing the Internet of Things (IoT) on your farm. Even if you’re not inclined to take this on yourself, any decent networking technician  can easily set up your AyrMesh network and the ezeio to help around the farm.

Sensor networks

davis_soil_station

Courtesy of Davis Instruments

Much has been written about the use of remote sensors in farming, with soil sensors leading the way. I think it’s worthwhile to understand how these sensors work and what options are available

We have highlighted some of these products (gThrive, Farmx, Edyn), and there are others coming up including Cropx and AgSmarts that we have not been able to evaluate in depth yet, although they are very promising and appear to be more focused on “mainstream” agriculture rather than specialty crops.

The soil sensor people understand that, to have soil sensors near the plants, you have to have sensors that are battery-powered (because you don’t get enough sun under the canopy to use solar). Because of that, most soil sensors use a low-power radio system; many use a “Personal-Area Network,” usually based on the 802.15.4 low-power, low-bandwidth meshing standard. These networks allow the sensors to use very little power so the batteries can last for months or even years. Additionally, the bandwidth (the amount of radio spectrum they use) is so low that they can transmit a very long distance with minimal power – frequently hundreds of yards – and the meshing capability means they can cover a very large area in a couple of hops. So these sensor networks actually ARE practical for gathering data from sensors, even in a very large field.

gThriveKit_ACPowered-001

gThrive sensors and gLink gateway – Courtesy of gThrive

However, these systems, just like your home WiFi network, require a “gateway” device out in the field to connect them to the larger network (your AyrMesh network or the Internet). The Edyn sensor is an exception, because it connects directly to your WiFi network, but it is primarily aimed at gardeners, not commercial agriculture. Davis Instruments uses the weather station as the Gateway device, which makes it simple, but it does not use a meshing system, which limits how many sensors you can deploy. For almost all systems, sensors are not directly on your network or the Internet – the field network is a special network that only “talks” to the gateway device, and the gateway device “talks” to a normal Internet Protocol network – and that is usually a cellular modem connected to the Internet.

I generally discount analyst firms, but I have to reluctantly give kudos to Lux Research for hitting the nail right on the head: sensors are too expensive. With the exception of the Edyn, which you can buy at Home Depot (and connect to your AyrMesh network or other WiFi source), you have to buy:

  1. However many individual sensors you want,
  2. A Gateway device for your sensor network (possibly multiple gateway devices if you want sensors in multiple fields), and
  3. Cellular subscriptions for each gateway device.

This is a lot of “commitment” before you even figure out how to effectively use the sensors and the data that comes from them – thousands of dollars just to get started plus a monthly or annual commitment to get the data. These systems are being marketed primarily to folks growing wine grapes in California or vegetables in Arizona – high-value crops with severe water costs and restrictions.

There are changes coming, of course, but there are also ways to get started now with less commitment.

in_garden_2_smallFirst, if you’re growing a few acres of cut flowers, organic vegetables, or other high-value, high-intensity crops, the Edyn system may be very useful. Put an AyrMesh Hub near your field and deploy the Edyn sensors and valves controllers. You don’t have to save a lot of time and water to justify the expense.

Davis Weather Envoy

Davis Weather Envoy, courtesy of Davis Instruments

Second, Davis Instruments has a nice system that they don’t advertise much. Their Wireless Weather Envoy datalogger can be connected to any Ethernet network (e.g. a Remote AyrMesh Hub, an AyrMesh Receiver, or an AyrMesh Bridge) using their Weatherlink IP module. It can then connect to their Soil Sensor Station, which has up to four soil moisture and soil temperature probes.  It will also connect to a Vantage Vue wireless weather station, which is a very high-quality, low-cost, integrated weather instrument cluster that you can put up in any field in a matter of minutes. There’s a small annual fee for their cloud-based Weatherlink service, but it makes the system VERY easy to use.

If you need more soil sensors, they also build an Envoy 8x, which has the ability to simultaneously “talk” to up to 8 stations – weather stations or soil stations – within about 1000 yards.

batteriesEither the Wireless Weather Envoy or the Envoy 8x can be tucked into the cabinet of the Tycon remote power system we recommend for field Hubs, Receivers, or Bridge radios, and powered from the auxiliary power output on that system.

Third, if you do want to deploy many soil sensors using a system like gThrive or Farmx, you can connect the gateways in each field to an AyrMesh devvice to avoid exorbitant cellular fees for each gateway device. Their gateway devices have Ethernet ports, so they can be connected directly to an AyrMesh Remote Hub, Receiver, or Bridge unit, and you can skip the cellular bills.

We’ll have more on weather and soil sensors – if you have questions or comments, please leave them here (for public response) or contact us.

 

The Internet of Things (IoT) on the farm – part 1

tag_cloudI read a LOT about the “Internet of Things” (abbreviated IoT) is in the news lately; you probably have see it too, and there is a lot of excitement around it. And I would argue there’s good reason for that – it is going to change everything, perhaps more fundamentally than cellphones and, later, smartphones. But it is important to understand what the IoT is, what it is not, and how it will affect life on the farm.

nest_thermo

Courtesy of Nest

The IoT is not a single thing or even a particular class of things; it refers to a new generation of devices that are connected to the Internet and perform some function, with little or no human interaction. There are already a LOT of good examples, from the Nest Thermostat to kid’s Arduino toys, from devices that can be handy almost everywhere like a network-connected lightswitch, to highly specialized devices like grain dryer controllers or irrigation controllers. I would argue that little of this stuff is new; the things we are seeing being touted as “IoT” devices are really the same as things we already have, just made smaller, smarter, and less expensive. Frequently a LOT smarter and a lot less expensive, which is important.arduino

Belkin_wemo_outlet

Belkin WeMo WiFi Outlet

But the profusion of little, inexpensive, smart things all over the place is having effects we can’t fully understand or appreciate yet. The one thing we can predict with some certainty is that the people who understand these devices and put them to use intelligently will see tremendous gains, just as those who started using computers intelligently saw huge benefits. The question, of course, is, “How do I use these devices?”

Technical knowledge is much less important at this phase than imagination – in all honesty, the most technically competent people miss a lot because they are too invested in how things ARE, so they cannot understand how things COULD BE. So I pose this question to you: what on the farm could be made better (faster, cheaper, more profitable, or more enjoyable) by little computers with accurate little sensors (for light, heat, moisture, position, dream_farmmotion, and lots of other things) and robust built-in data communications infrastructure (WiFi)? What could you monitor? What could you control remotely (or even automatically), especially using the data you are getting from monitoring?

We’ll explore this more in future blog posts, but I would like to hear what you have to say, as well.

You can find Part 2 here, as well as a good post about sensor networks.

The state of the art in soil sensors – Farmx

As mentioned in an earlier post, we have been working with the RoyseLaw AgTech Incubator. One of the benefits of the program has been the ability to work with some of the most innovative companies coming up. This is one of those companies.

farmx_sensorFarmX, based in Tulare, CA, has launched its FarmMap solution in CA and is introducing FarmMap with special pricing for existing Ayrstone customers. To take advantage of this offer, please complete this form.

FarmMap is a low-cost smart farm automation tool that uses scientific grade instrumentation to give you access to all the information you need about your farm in simple, secure, all-in-one tool. The FarmMap’s cloud platform gives you constant, secure access to your data, recommendations and field health.

iphone_map_notificationsFarmMap’s system of soil probes gathers information across your acreage with 1 probe for every 10 acres and connects your farm to the cloud. Each FarmMap sensor probes captures key environmental, soil and plant health data in real-time.

FarmMap uses state-of-the-art machine learning techniques to uncover opportunities to improve productivity and reduce the cost of inputs, such as water and fertilizer. FarmMap gives you the confidence to make accurate decisions quickly, accurately, saves you time and gets rid of guesswork.

FarmMap BenefitsThis is another example of the kind of technology that is available at very low cost when you outfit your farm with an AyrMesh network – each field can be outfitted with a FarmMap gateway device to communicate with their soil sensors, and you can connect the gateways to AyrMesh components (Hubs, Receivers, or Bridge radios, depending on your network) to connect them to your network.

Click below for more information about FarmX and FarmMap:

farmx_logo2

Long Range WiFi: two approaches

AyrMesh HubWe didn’t invent the idea of putting WiFi on farms and ranches, although I think we’ve done a lot to popularize it. And it’s not really WiFi that’s important, it’s just having a farmwide network that you can connect to and move data with.

When we started, we realized there were two ways we could build out the farm wireless network, and that we’d need to support both ways. However, we had to start somewhere, and we knew that the best short-term “proof of concept” was using the mesh network approach: a bunch of high-power WiFi Access Points that are connected to the Internet and talk to each other using a meshing protocol. That’s what gave rise to the AyrMesh Hub.

Because the Hubs can be up to 2.5 miles apart, it allows you to extend your network out quite a ways from your home place, and that’s useful for a lot of people. It also allows you to “get in the game” for a minimal investment – a few hundred bucks for a Hub and a little time putting it up high and out in the clear gets you WiFi across your farmyard and out into your fields. Then you can extend the network from there with additional Hubs.

However, sometimes you just want to connect someplace into your network, and you don’t need to have WiFi. For those cases, a different approach is optimal: point-to-point microwave links, also known as “bridges.”

AyrMesh BridgeA bridge can use WiFi or a WiFi-like signal to connect two locations and pass data between them. Typically they are “Layer 2” devices, meaning that they work just like a long, wireless Ethernet cable. You plug one radio into your network (typically your router) and then plug the other radio into whatever you want to put on your network (a computer, IP camera, WiFi access point, etc.), and everything works just like it was plugged into your router.

The AyrMesh Bridge uses microwave radios that use the 5.8 GHz. band (used for 802.11 WiFi “a,” “dual-band n,” and “ac”), but they use a special “narrow-band” microwave signal that increases the range, reduces the effects of interference, and makes the signal invisible to WiFi “sniffers.”

Of course, if you are just connecting some distant device or devices into your network, you can also use an AyrMesh Hub and an AyrMesh Receiver. It will actually work the same way; the differences are:

  • The AyrMesh Bridge is just a wireless Ethernet cable that doesn’t provide a wireless signal usable by anything else. The AyrMesh Hub provides WiFi that other devices can use.
  • The AyrMesh Bridge is a “1-to-1” system, but you can have several Receivers talking to one Hub.
  • The Receiver can be up to 2 miles from the Hub, but the Bridge radios can be up to 5 miles apart.

It’s not necessarily an “either/or” thing. Several AyrMesh users are using the AyrMesh Bridge to reposition their Gateway Hub to the top of large structures (e.g. grain legs) to give the Hubs maximum range. A couple of people are using their Hubs for WiFi but providing connectivity to other buildings using Bridges (with the Hub and the Bridge radio mounted next to each other on top of the house or office). And you can use a Bridge connected to a Remote Hub to connect a device several miles away from the Hub.

There are a lot of folks out there selling wireless bridges – we think the AyrMesh Bridge is the best for one important reason: it’s the easiest to set up and use. No configuration is needed: you just connect both radios in the Bridge to your router. They download your configuration from AyrMesh.com and then all you have to do is mount them outside pointing at each other.

IP Cameras on the Farm: Part 3 – Using IP cameras for security

QNAP_NVR

QNAP NVR, courtesy of QNAP

Now you know how to select an IP Camera, set it up on your farm, and view it from wherever you are, on or off the farm, which may give you a greater sense of security by itself.

However, you can’t watch what’s going on 24×7, and, with most cameras, you can’t go back and see what happened a couple of minutes ago (or last week). If you want to incorporate cameras as part of a security system (which may also include things like driveway sensors, indoor motion sensors, window/door open sensors, and other devices), then you should, at a minimum have some sort of recording, and probably some sort of motion detection on the cameras. What I have found to be best is some sort of system that is continuously monitoring the cameras, and, when motion is detected, it records the previous several seconds of video and keeps recording until after the motion stops. That way, I find, I get a nice, clear video of the mailman coming up to the box every single day (and, if I choose, a text and/or email with a picture of the mailman within a few seconds of his arrival).

But, seriously, if you are having trouble with intruders (people breaking into your storage sheds or stealing Anhydrous), getting notification and pictures of them is a good idea. For that, you need a Network Video Recorder (NVR). An NVR is a device that plugs into your network and monitors your IP cameras, allowing you to view several cameras at once and go back to see what happened at a particular time. Most modern NVR systems also have motion detection and multiple alarm functions (including email and tripping a relay to set off an alarm).

Swann DVR with cameras, courtesy of Swann

Swann DVR with cameras, courtesy of Swann

An NVR is different from a Digital Video Recorder (DVR), although both can be useful tools for farm security. A DVR typically has a number of coaxial inputs for cameras, so you can attach 4, 8, or 16 cameras to the unit using coaxial cable and it will continuously record the video from those cameras. Most modern DVRs also have an Ethernet port so you can connect them to your network and monitor the cameras from wherever you are. A DVR can be very useful anywhere you want several cameras in a single physical location, like your home, workshop, or storage shed, where you don’t mind stringing wires. Most newer DVRs can also detect motion send you an email or other form of alarm when they do.

Foscam indoor camera with storage - the little microSD slot under the antenna - courtesy of Foscam

Foscam indoor camera with storage – the little microSD slot under the antenna – courtesy of Foscam

Some newer IP cameras even have the NVR capability built-in, usually via an SD card slot. They store either still images or video to the SD card continuously so you can just “back up” while you’re viewing the cameras.

Almost all IP cameras have some form of motion detection, but many of them are effectively useless. There are three types of motion detection:

  1. Overall picture motion detection – this just looks for the number of pixels changing in the frame and alerts if that number rises above a certain level. Unfortunately, this is almost entirely useless, because, if the sensitivity is high, it will “alarm” every time the lighting changes slightly, and if the sensitivity is set too low, it won’t alarm at all.
  2. Setting a "zone" so the camera will alarm when the door is opened - courtesy of networkwebcams.com

    Setting a “zone” so the camera will alarm when the door is opened – courtesy of networkwebcams.com

    “Zoning” motion detection – this allows you to put rectangles into the camera’s frame and only alarm if there are changes inside those rectangles. This works better, but you still get a lot of “false alarms.”

    Object detection, courtesy of Sitehound

    Object detection, courtesy of Sitehound

  3. Object detection – this is an algorithm that can pick out moving objects in the video stream and distinguish them from changes in the background. This means that you only get an alarm when something moves, and you can set the size of the object that will set an alarm so you don’t get called every time a gnat flies by.

Most inexpensive cameras use the first type of motion detection, which means the on-camera detection is worthless. Almost all other cameras use the second type of detection, which is not useless but still not great. Some high-end cameras can do object detection, but they’re pretty expensive.

The better idea is to have your NVR software do the detection and alarming, rather than the camera. There are two ways to do this: using a dedicated NVR (a small computer running embedded NVR software) or running an NVR program on a desktop computer that’s on 24×7. There are advantages to either approach.

Using a dedicated NVR is simple: you set it up, add the cameras to it through the onboard user interface, and forward a port to it on your router so you can access it while you’re away. QNAP is a vendor that makes a large range of standalone NVRs that are compatible with a wide variety of cameras. In all honesty, I have never been able to evaluate one, but customers have reported good results with them. Synology has developed a pretty good reputations, also – both brands are generally available on Amazon.

The downside to the dedicated NVR is that only some cameras are supported (although the brands mentioned above support a huge number of brands) and that it is difficult to evaluate the software to tell how well it will work for you. The vendors don’t really provide much detail about how they detect motion, what options are available, and what the units can do.

Ubiquiti Cameras and NVR, courtesy of Ubiquiti Networks

Ubiquiti Cameras and NVR, courtesy of Ubiquiti Networks

Some camera vendors like VivotekGeoVision, and Ubiquiti sell both cameras and NVRs to work with their cameras in an integrated package. Going that way makes it easier to know your cameras will work the the NVR, but more difficult to evaluate whether you have the right cameras and NVR for your operation.

The other option for an NVR is to use an NVR program on a computer that’s running all the time. There are several of these programs, but the two most popular are BlueIris and SightHound.  BlueIris is less expensive and runs on any Windows PC; SightHound is more expensive, but has a number of important advantages:

  1. It runs on either Windows or Mac computers;
  2. it is very easy to install, configure, and use; and
  3. it features an advanced object-detection motion detection.

I’m an unabashed fan of SightHound – I have written about it before on this blog – although I have used BlueIris and it is also very good. I also like the Ubiquiti system (Note: Ubiquiti builds the hardware for the AyrMesh system), although I find their software to be a bit too complex for most users. It also integrates with their mFi sensors and switches for security and automation.

Dropcam - courtesy of Dropcam

Dropcam – courtesy of Dropcam

There is actually a third option – a camera that automatically loads its video to a “cloud-based” NVR. Dropcam is a system that uses nice, small, relatively inexpensive indoor cameras, which automatically send their video stream to their cloud servers, without the need for port-forwarding. I have also written about Dropcam before on this blog. The big advantages with Dropcam is that they are VERY easy to set up and use, and the company is now part of Nest (maker of the Nest thermostat), which is part of Google – they have the resources to keep this going and expand those products to do a lot more in the future. The disadvantages are:

  1. They currently only make indoor cameras; there is no outdoor option, and the cameras are not designed for outdoor temperatures.
  2. They charge on a per-camera basis for the recording function. They charge $10 per month/ $99 per year for the first camera and $5 per month/ $50 per year for each additional camera (that’s for 7 days of recording; they charges for 30 days of recording are 3x higher)
  3. There is no way to directly view the camera – the only way to view it is through the Dropcam website. This is not a big problem practically, but it does bug me a little. Even without a subscription, you can view the camera through their website and get notices when motion is detected, which is nice.

Whatever cameras and NVRs you choose, you’ll need to connect the cameras to the network, connect the NVR to the network, and make sure the NVR is “talking” to the cameras. You can then port-forward to the NVR (remember about this from the router series?) in order to access it from the Internet; that way you don’t have to port-forward to each of the individual cameras. You’ll need to fine-tune the sensitivity of each camera in order to get appropriate “alarms” for movement. You’ll also need to set the alarms up so they contact you appropriately. Setting up an email alarm is relatively easy, and all the cellular phone providers give you an email address that goes through as an SMS text message – for instance, on Verizon, if the phone number is 555-123-4567, you can email “[email protected]” That way you can get a text message on your phone whenever motion is detected.

So, now you have cameras set up in the critical parts of your farm, which you can view through your NVR, and you are set up to get alerts any time something moves in the field of view of those cameras. All of this, of course, is made possible because of your AyrMesh Network, covering your farm with powerful IP connectivity.

And there’s still a lot more you can do with the network… stay tuned!