Tag Archives: internet

The Robots are Coming! The Robots are Coming!

Silly robot image
One idea of an autonomous farm…

Every week there seems to be an announcement about autonomous farm equipment – John Deere acquired Blue River in 2017, and then Bear Flag Robotics last year, and now they’re, essentially, announcing Bear Flag’s products as their own. Meanwhile, Case bought Raven Industries last year, after Raven had acquired DOT Technology and SmartAg. Even smaller, specialty-crop companies are getting into this, like GUSS and Fieldin.

The case for autonomous rolling stock is obvious – if you’re not driving the tractor/sprayer/combine/whatever, you can be somewhere else doing something else valuable. And there are times you would really rather have the robot driving…

I have considered tillage to be the activity most ready for automation, so I had applauded Bear Flag’s emphasis on tillage and Deere’s decision to acquire them and offer an autonomous 8R for tillage. I’ll be interested to see how this goes… it’s coming at a time when no-till or strip-till is increasingly popular, but there’s still a lot of the world still digging up fields.

Planting and harvest are difficult, complex, and time-sensitive tasks, so I expect they will be the last to be automated, but that still leaves spraying and cultivating. GUSS out here in California is already out spraying orchards, and, again, I think Deere was smart to acquire Blue River for their vision-based weeding system. It’s not ready to be a blockbuster product this year, but I can certainly see a future where weeding (and possibly other pest control) is done by a self-driving machine. The autonomous farm won’t be a complete “rip-and-replace” operation – I expect we’ll see it come one piece at a time, slowly replacing human labor, just as it has for the last 200 years.

In truth, once you are liberated from having to drive the machine, of course, you can actually employ more machines. You can have multiple large machines, like the Deere 8R tractor or the Raven (now Case) Omnipower platform, working in different fields, or you could conceivably start replacing some of them with swarms of small, nimble machines like the prototype Fendt Xaver seeder or the Australian Swarmfarm sprayer.

However, having multiple machines in the field requires that they be able to communicate with each other and, possibly, with a central server. That communications must be both low-latency (to avoid delays and collisions) and high-bandwidth (to ensure that they can “speak freely” – at times they’ll need to communicate a lot of information). There are a lot of pundits out there telling us that “5G will solve everything” – and the technical specs tell us that could be absolutely true. That leaves only one important question: do you have 5G on your farm today?

If you’re in the 95% or so who answer “no” to that question, you might want to consider another solution – a solution that might even be better. Meshing WiFi was originally designed to enable “Mobile Ad-Hoc Networks” or “MANETs” – exactly what these devices are using in the field. Instead of waiting for a carrier (or several – many farmers I know require two or more phones, because one carrier covers one part of the farm and a different carrier covers another) to come and plant a 5G network on your property, you can start establishing a WiFi network across your property using AyrMesh Hubs and AyrMesh Cab Hubs for your vehicles.

The advantages of using WiFi include:

  • You control the network: what gets covered and who gets to use it
  • It uses your existing Internet connection – no extra charges
  • It connects to your existing LAN – you can put servers on your network so data need not leave your farm
  • It’s standard, so it works with everything, from your laptop to cameras to low-cost soil sensors and controllers… including robots
  • It will get better with time – new versions of WiFi will bring advantages.

This is an exciting time for farming – things are going to change pretty quickly, and there will be real advantages for those who adopt new technologies. The AyrMesh network provides a “backbone” that allows you to adopt those technologies easily, and we’re eager to work with the companies that are producing these new technologies to maximize the value they bring to farmers.

Futuristic techy stuff with no obvious link to farming…

This is a bit of a departure from our other blog posts – I like to talk mostly about up-to-the minute practical stuff you can start using right away. Today, however, I’m going to point out some upcoming technology trends that appear to have no connection to farming, but I think will end up being profoundly useful.

WiFi 6

WiFi 6 is the new marketing name for 802.11ax, the next generation WiFi standard. Briefly, we have seen 802.11b (2.4 GHz only, WEP security which did not turn out to be secure at all, up to 11 Mbps), 802.11a (similar to b, but on 5.8 GHz and up to 54 Mbps), 802.11g (2.4 GHz. with OFDM for up to 54 Mbps and WPA for real security), 802.11n (dual-band with MIMO for greater bandwidth and range and even better security with WPA2 – this is what the AyrMesh Hub2 series is based on – now re-named “WiFi 4”), and 802.11ac (also called “WiFi 5” – 5.8 GHz only with fallback to 802.11n for 2.4 GHz, with MU-MIMO at the access point to optimize bandwidth to more devices and wider channels to increase bandwidth over short range – not useful at all for long-range outdoor use).

802.11ax brings several improvements to WiFi that I think are important:

  • OFDMA and 1024-QAM modulation for greater bandwidth through the same channel bandwidth. For maximum range (given statutory limitations in total output power) you want to use the narrowest channel bandwidth possible. This allows us to push more data through the same channel bandwidth.
  • Breaking the channels into smaller pieces to make OFDMA work, called “Resource Units” or “RUs.” This also opens the possibility of using fewer RUs to create even narrower channels for longer-range, lower-bandwidth connections, similar to LPWAN networks like 802.15.4 (Zigbee, Threads, etc.) or LoRa.
  • Target Wake Time (TWT) – this is a trick borrowed from 802.11ah and LPWAN systems – it allows devices to sleep efficiently and coordinate with access points to shorten the amount of time the radio has to be on, drastically reducing the amount of power required, especially for devices that are transmitting small amounts of data at sporadic intervals (e.g. sensors and other IoT devices).
  • Download and upload MU-MIMO – maximizing the bandwidth between the AP and the client in both directions (not just transmitting from the AP to the client).

Taken together, these improvements in WiFi 6 will improve on-farm WiFi in two important ways:

  1. Increasing the bandwidth available (through OFDMA and MU-MIMO) – just making everything faster and increasing the value of the network overall.
  2. Being able to use the WiFi network as a low-bandwidth network like Zigbee or LoRa with battery-operated sensors and actuators, so a grower would only need a single wireless network for all their needs.

Now, the truth is that you can use your WiFi network for sensors and actuators today, and devices like the Espressif ESP-32 make that relatively easy and very inexpensive. But it still takes a lot more power to use a WiFi radio than, for instance, a Zigbee or LoRa radio, so you must have either much larger batteries or some form of external power (e.g. solar panels) for WiFi.

WiFi 6 should overcome these shortcomings, which makes us very excited about it. The 802.11ax standard has just been ratified by the IEEE, and we are seeing indoor equipment already available. As more specialized 802.11ax equipment becomes available (especially high-power products and products analogous to the ESP32) we will be watching very closely.

Edge Computing

As I think everyone has seen, all data is now going to “the cloud” – servers on the Internet. This is generally a good thing – I want to make sure all the data I am going to need in the future is safely stored in a class 5 data center that’s not going to fail.

But there are two primary places this paradigm files: one is for cases where ANY latency (delay between sending a request to the server and getting a reply) will slow down operations, and the other is where Internet access is slow, intermittent, or not present. Both of these conditions apply to farming: low latency is vital for enabling farm machinery autonomy, and, despite all the talk about it, rural Internet connectivity is still, generally, awful.

At the same time, we are seeing the next generation of processors for mobile devices coming out that have higher performance than the “top-end” CPUs of a few years ago, while consuming tiny amounts of power. Since they dissipate so little power, they can be housed in more sturdy enclosures requiring little or no air circulation – in other words, deployable on the farm!

I can easily imagine a “farm server” that comes in a small, sturdy box that you plug into the wall and connect to your router and that provides services like:

  • Security- monitoring and recording scenes from cameras on your property, alerting you to events happening on the farm, turning lights on and off, and even locking and unlocking doors and gates.
  • Monitoring and automation – checking and storing readings on sensors, using rules to automate operations (starting an irrigation system, filling tanks, alerting when a grain bin or hay bale is too warm).
  • Communications – providing connection services for VOIP and/or messaging apps on phones.
  • Autonomy – providing coordination to autonomous vehicles operating in your fields.

This approach also has the advantage of increasing the grower’s control over data – it can stay on the farm’s server, be backed up to “the cloud,” or backed up the old way (to USB sticks, for instance).

Autonomy

I have alluded to this a few times in this article, but, living here in Silicon Valley, I see autonomous cars creeping around on public roads all the time. The problems of enabling autonomous vehicles on the farm are DIFFERENT, but not WORSE, than running autonomous cars on public roads.

The first problem is one of functional safety – ensuring that farm equipment is inherently safe. Very simply, farm equipment is dangerous, and a 50,000-lb. combine churning through a field or a sprayer buzzing along at 25 MPH constitute real threats to anything that gets in front of them.

However, LIDAR, RADAR, stereoscopic cameras, and other technologies can help machines “see” their environment very effectively, and the prices of those technologies (and the computing power to effectively combine their inputs in real time) is coming down dramtically. We are seeing some very interesting, practical examples in startup firms (GUSS, Swarmfarm, SmartAg, DOT), and we expect to see a lot more coming.

Conclusion

As I said at the beginning, this post is about stuff that’s not directly applicable to farming, but probably will be soon. Ten years ago I could have written about how smartphones will change life in farming, and a lot of people would have laughed at me. Now I don’t know anyone who doesn’t go out without a smartphone. What will be next?

Interesting proposal from our friends at Land O’ Lakes

We were intrigued and excited by a recent press release from Land O’ Lakes announcing that their retail operations would be installing WiFi for the use of their customers. In the best of times the rural ag retailer can be a lifeline for local farmers; in these difficult times, offering services to help local farmers and their families keep connected and work effectively, even if remotely is absolutely commendable.

We salute the Land O’ Lakes leadership and stand ready to assist any of their affiliated retailers in deploying WiFi on their rural locations.

Whether you’re a farmer needing to have connectivity in the farm office (and perhaps share your connection with a neighbor in need) or a rural business wanting to help your employees and rural communities stay online, Ayrstone can help. Just drop us an email at support@ayrstone.com and we’ll work with you.

A Whole New Kind of AyrMesh Hub – the Hub2x2

The new AyrMesh Hub2x2

After extensive research, testing, and development, we are pleased to announce the all new AyrMesh Hub2x2.

The AyrMesh Hub2x2 is our first Hub to use MIMO to dramatically improve the upload and download speed, both between the Hub and your devices and between the meshed Hubs themselves. The Hub2x2 can deliver up to twice the data speed of the Hub2T, enabling our customers to do things like:

  • Use high-definition security cameras
  • Download manuals, diagrams, videos, etc. up to twice as fast
  • Make and Receive video calls
  • Stream HD movies – even out in the garden

MIMO is a technology that allows a WiFi access point (like the AyrMesh Hubs) to use multiple antennas that receive and transmit multiple “spatial streams” of data simultaneously. Multiple antennas also help make the signal more readily available in difficult places like in trees and around buildings.

The use of MIMO represents a new strategy for AyrMesh Hubs. Previous AyrMesh Hubs traded off bandwidth to achieve maximum range. The Hub2x2 combines outstanding bandwidth and excellent range to normal WIFI-enabled devices, with a small sacrifice in Hub-to-Hub range.

The reason for this tradeoff is that we have found that most of our customers have their Hubs within a mile of each other, and are primarily interested in ensuring good WiFi coverage with excellent speed around their home, pool, gardens, farm office, workshop, barns, chicken coops, and stables. The new Ayrmesh Hub2x2 is designed specifically for those needs while still enabling you to expand your AyrMesh network out into fields and across thousands of acres.

The Hub2x2 vs. the Hub2T

The AyrMesh Hub2x2 is a perfect Gateway Hub for almost any AyrMesh network, because it provides long range and high bandwidth. The Hub2x2 is also a great Remote Hub up to a mile away, making it an excellent product for providing high-bandwidth WiFi around a rural home, farm, or estate. By placing Hubs a mile or less apart, you can ensure a continuous “cloud” of WiFi for your devices.

For Remote Hub installations more than a mile away, we recommend using the Hub2T. Its single antenna “focuses” its signal much more for longer-range applications, which provides better bandwidth at those distances than the Hub2x2.

The only time we will recommend the Hub2T as a Gateway Hub is when a Remote Hub will be positioned over 2 miles away from the Gateway. In this case, the Hub2T will provide better bandwidth to the Remote Hub2T than the Hub2x2 would.

One other point: the Hub2T has MUCH lower power requirements than the Hub2x2, so it is more suitable for solar/wind powered installations.

The new AyrMesh Hub2x2 – a new kind of AyrMesh Hub

As always, please let us know what you think!

 

Introducing the New AyrMesh Receiver

We are pleased to introduce the new model of the AyrMesh Receiver. This new model represents a significant improvement on the older model while maintaining complete compatibility with previous AyrMesh products. This product combines the proven software from our previous model AyrMesh Receiver with new, more capable hardware. The new AyrMesh Receiver is a bit larger than the old model, and offers several new features:

  • Bigger, stronger antenna for more solid links
  • Mounting tabs on the back for mounting to poles or flat surfaces
  • “Extra” external Power-over-Ethernet (PoE) port on the Receiver for connecting external PoE devices like Cameras
  • Standard 48V power injector/power supply so standard 802.3af devices can use the external PoE port

The ability to mount the Receiver on a flat surface (without additional hardware) is a feature that many users requested over the years, and the ability to add an outdoor PoE device will, we think, enable our customers to enhance security and operational awareness.

Overall, the new Receiver represents a significant improvement over the old model. While the old models will continue to work perfectly, you might want to consider replacing an older Receiver with the new Receiver if:

  • It is in a marginal location, where it is just getting enough signal to make the link – the new Receiver’s more powerful antennas can help; or
  • You want to have an external PoE device – like an outdoor PoE IP camera, connected to the Receiver.

As always, we welcome your thoughts, questions, and comments.

Introducing the New AyrMesh Hub2T

We are pleased to announce the new AyrMesh® Hub2T.

The AyrMesh Hub2T is a direct replacement for the Hub2n, but with some important differences. It meshes with the Hub2n and any other AyrMesh “Hub2” products.

First off, the Hub2T is a lot bigger than the Hub2n, with a much bigger antenna and a tougher stainless steel mounting bracket. The bigger antenna improves the performance of the Hub, while the new bracket just makes the entire Hub more stable and reliable, whether it is mounted on a pole or a flat surface.

Paradoxically, the new Hub2T has a little less radio transmitting power (about half a watt vs. almost a watt for the Hub2n), but it performs better than the more powerful Hub2n. Why? That big antenna! Reducing the transmitting power allows us to use twice as powerful an antenna, and (at least to a degree) a higher-gain antenna is better than more transmitting power. Power allows the Hub to “shout” longer distances, but a higher-gain antenna enable the Hub to both “shout louder” and “listen better” – resulting in better overall performance.

The other interesting change is the addition of a “gland” on the bottom of the radio. This gland makes it a bit trickier to install the Hub, but it protects it from water splashing up from below. This addresses concerns we have heard from some livestock operators who want to put Hubs near livestock pens or in milking parlors or farrowing houses, but worry about having to spray water around the Hub. We still don’t recommend spraying water directly up at the Hub, but this Hub will better withstand inadvertent sprays of water from below.

The Hub2T also uses less power than the Hub2n, so it is better for solar-powered field installations – if you have experienced “dropouts” in winter due to low batteries on the solar system, the Hub2T will work better (although that may also be a sign you need to replace those batteries…)

Should you replace your Hub2n with a Hub2T? In most cases, no – you’re not going to see enough of a difference in performance to make it worthwhile. The only exception is where there is a danger of water splashing up from beneath the unit.

But, if you are just starting your AyrMesh network, and as you expand, the AyrMesh Hub2T will be a low-cost, no-hassle workhorse, whether it’s on a building or out in the field.

Quick Note: “5G” technology on the farm

I have a Google Alert for “Wireless Farm” – I get about an article a week (and many of them are about wireless technologies for “server farms” and other odd things). But today I got a link to this article about “How 5G will impact the future of farming.” Intrigued, I clicked it to find a puff-piece about how Deere wants better wireless connectivity so that combines can “talk” to each other via “the cloud,” pointing out that it can take up to a minute with current technology for one combine to upload its data to the cloud, then the other combine to download that data and act on it. A couple of points here:

  1. “5G” mobile technology is based on “millimeter-wave” bands – over 20 GHz. (20,000 MHz.). Current LTE is based on 700 MHz. radios, and previous mobile data technologies (2G/3G) were “piggybacked” on existing 800 MHz. and 1900 MHz. radios. The range and, in particular, the ability of a signal to penetrate solid objects varies inversely with the frequency. So, to have 5G covering the areas cellular covers today requires a MUCH higher density of cellular towers than we have; to have it cover all of the rural U.S. will require thousands and thousands of new towers, a huge infrastructure investment
  2. As I have mentioned previously, the vast majority of cellular infrastructure investment is happening (and will continue to happen) within cities and towns, where the density of opportunities for subscriber revenue makes it profitable.
  3. Within the article, however, is this paragraph:

The term “5G” refers to the fifth-generation wireless broadband technology based on the 802.11ac standard. The packet of technology will bring speed and coverage improvements from 4G, with low-latency wireless up to 1GB/s.

802.11ac is WiFi, not mobile (cellular) technology. Specifically, it is the current generation of WiFI using the 5.8 GHz. (5,800 MHz.) radio band.

And here’s the point: “5G” mobile technology is not going to have an impact on farm operations in the forseeable future. But you can have multi-megabit WiFi technology on your farm TODAY – and you don’t have to wait for your friendly cellular carrier to put up a zillion towers. FURTHERMORE, since your AyrMesh system puts all the devices onto YOUR OWN Local-Area Network (LAN), everything on the system can just talk to each other – they don’t have to upload to the cloud and download from the cloud or anything like that. Your combines can “talk” to each other and your trucks, you can automate processes and enable autonomous vehicles – NOW – with an AyrMesh WiFi network.

 

Privacy and Security on the Internet

On Monday, April 1, 2017, Congress passed and President Trump signed a bill to repeal rules that require ISPs to get your permission before selling information about your online habits. You can read more about it at USA Today or Ars Technica.

As soon as it was publicized, we received inquiries from Ayrstone customers about how they can protect themselves. Unfortunately, we really don’t have much we can offer. There is a lot of talk about Virtual Private Networks (VPNs), and some about the Tor Project, but neither is a very satisfactory solution.

VPNs securely route all your Internet traffic to the vendor’s routers, and then sends that traffic to the Internet. This will prevent your ISP from seeing your Internet habits (because, from their perspective, all your traffic is going to the VPN vendor), but clever spies can untangle your traffic from the VPN’s stream, and there is a danger that the VPN will simply collect your information and sell it.*

The Tor project is the result of a U.S. Navy project (paradoxically, while the government spends your money to reduce your privacy, they also have spent money to improve your privacy…). It is voluntary network of computers – you download their software, and all your traffic is routed through a seemingly random collection of computers around the globe before appearing again on the Internet from a random location. This is much more secure, but there are cases where agencies have re-assembled data from the Tor network.

Either VPNs or Tor will slow down your network, and neither offers perfect privacy. Various ISPs have vowed not to sell your internet usage data, and several states have started investigating passing local laws to protect privacy.

Add to this, unfortunately, that your ISP is far from the only source of information about your Internet usage. Google, Microsoft, Apple, and many, many others gather LOTS of information about your usage, and they use it to target advertising to you.

So there are three things you can do: first, use VPN or Tor software to increase your privacy, second, talk to your lawmakers about re-instating (and, preferably, increasing the scope of) the regulations around privacy, and, third, follow the advice of my old boss, Scott McNealy.


*There is another use of VPN – to connect a remote network to your LAN – and many of our customers use this kind of a VPN. In this case, you have a VPN router on your network, and you connect using VPN software or another VPN router to a remote network, such as (for example) a remote location where you have a different Internet “drop” from your home. In this use of a VPN, devices at that remote location get IP addresses and appear on the network as if they were in your home network, even though their traffic is routed out through a different Internet connection. This means you can be in the remote location and send a job to your printer at home, and it will be printed and ready when you get home, or you can access files on your home PC when you’re away. This does not help your privacy, except against information theft on public Internet connections, but it can make remote working more convenient.

The Internet of Things (IoT) on the Farm – Part 3

In Part 1 and Part 2 of this series, as well as the associated posts on the ezeio and sensor networks, I have focused primarily on IoT hardware: the part you can see and touch, and that touches your farm.

However, in many ways, software is much more important than the hardware. As I observed in Part 2, modern technology products are remarkably similar: a CPU, some memory, some storage, and some peripherals. If the peripheral is a relay, you have a device that can turn things on and off (like a remote-controlled power plug, or a WebRelay). If the peripheral is an “Analog to Digital Converter” (ADC) then the device can monitor sensors and report the values from those sensors. Some devices like the ezeio have both (and even more).

Of course, nothing happens on these devices without software. And software is involved in at least two important places: the software that is running on the devices themselves, sometimes referred to as “firmware,” and the software running on back-end computers (local or cloud servers, PCs, or even your phone or tablet) that is used to store and interpret the results from the devices.

These two pieces of software have to be able to “talk” with each other, and we’ll assume* they do so over your network, with the device connected to your AyrMesh network and the “back-end” software on some sort of cloud-based server on the Internet. Note that the “back-end” software COULD reside on a server on your property if you are using AyrMesh.

What the devices themselves do depends on both the hardware and the firmware on the device – in most cases, that firmware will collect readings from the sensors, upload that information to the back-end server, and, if appropriate, take commands from that server and take action, from turning on a light to starting a pump or a grain auger.

In most cases, that firmware is a closed system – there is no way for you to collect data off or communicate with the device directly, or to direct it to a location other than the vendor’s cloud server. It doesn’t have to be that way, but (1) it’s simpler, and (2) that gives the vendor much more control over the data.

The back-end server usually stores the data and presents it to you (either through a web page or a mobile app, or both). What data you see, how you see it, and what you can do with it depends on that back-end software. It may just present a time series of observations in the field as a graph, it may let you set up simple or complex rules (if the soil moisture is at this level or below, turn on the irrigation system), and it be able to present data in many useful ways (different graphs, superimposed on maps, etc.) and enable very complex control of your farm machinery.

The back-end server is usually a closed system, as well – most times it can only accept data from the vendor’s own devices. Sometimes it may have an “Application Program Interface” (API) that allows it to exchange data with other programs. It may also have the ability to upload data into it for tracking and presentation, or to download data from it for importation into another program. These APIs and import/export mechanisms may be very good, well-written, and well-documented, making them extremely useful. Or they may not. APIs are generally only useful for programmers – it takes code to make them work – but well-written and well-documented APIs can enable even relatively inexperienced programmers to create custom programs to do exactly what you want, and that can be extremely valuable.

On the other hand, back-end software without good APIs and/or import/export features is a “closed box” – what you get is just what you get, and there’s no way to get more or less. Understand, of course, that a closed system like this may do EXACTLY what you need, but, if your needs change, it may suddenly become useless.

Of course, there is also the issue of your data and what happens to it. The terms and conditions for the service may be very clear about what happens to your data, or they may be quite vague. Many of the data services will anonymize and sell the data that you store on their servers (the most unethical may not even anonymize it – beware!). This may concern you or not, depending on the nature of the data and how closely tied to your operation it is. For instance, it is generally valuable to share weather data – if your neighbors do so as well, you can gain a much better insight into the local weather patterns. On the other hand, you may not want to share geo-referenced harvest data – that tells too many people exactly what your land and your harvest is worth. “Fuzzing up” the geo-reference, however, might make it a lot more shareable.

When you are considering new devices to collect data and/or control machinery on the farm, these distinctions between “open” and “closed” systems, and the availability if good, usable APIs may seem abstract. Salespeople for “closed” systems will do their best to minimize the importance of these issues, but it’s absolutely critical. Openness in the device’s firmware means that the devices can be re-purposed to work with another system if you don’t like the vendor’s services, and openness in the back-end database means you can easily get your data and move it where it can be combined with other data and used (e.g. providing it to your agronomist for analysis, or storing it in a system where it can be combined with other data for decision-making).

Being smart about buying new technology for your farm can save you a lot of money in the long term, and a lot of frustration in the short term. We’ll keep an eye out for and report on interesting products that help you on the farm using open technologies.

*some devices connect directly to the network using WiFi or Ethernet, and some devices will have low-power networking (e.g. Zigbee or Google Threads) that use a “gateway” device to connect them to your network (or directly to a public network via cellular or satellite). There are even some that don’t talk to the network at all, using either Bluetooth or an embedded WiFi server to communicate directly with your phone, tablet, or laptop. And, of course, there are still devices that use some sort of flash memory and “sneakernet” (taking the flash memory off the device and walking it to a computer).

Welcome Eero and Google to the world of Mesh

Since we started marketing the AyrMesh system five years ago, we have gotten inquiries from folks who have large houses, offices, and small hotels/motels – can AyrMesh work indoors? The answer, of course, is that it can work, but it’s not optimal for a number of reasons, and we do not recommend it. AyrMesh is designed for outdoor use, mainly in rural areas.

We have been able to recommend the fine Open-Mesh products for indoor and urban outdoor use, but some new products have recently entered the market.

Eero was the first in this space, with a very nice-looking product and very good technical specifications. Unlike Open-Mesh, they do not have any way to mount their units outdoors, and they only offer one model (available in a 1-, 2-, or 3-pack).

Then, this week, Google announced the new Google WiFi product, utilizing a very similar approach of very nice-looking indoor meshing access points for larger houses. The Google WiFi products will be available in November, but they can be pre-ordered.

Open-Mesh uses their Cloudtrax website and apps to control their access points; we have used Open-Mesh here in the Ayrstone lab for years and found it to be excellent. It’s a fair bit more complicated than AyrMesh, but it has the more “commercial” features you might want for a business or a motel, and the more complex features are easily ignored for a home setup.

It’s worth mentioning that there have long been WiFi Repeaters (also known as “boosters” and “extenders”) that connect to your WiFi router and create a new WiFi signal, and devices like the Apple Airport routers that use “Wireless Distribution System” (WDS). Although a single repeater can work well, and three Apple Airport routers using WDS (one connected to the Internet and two “extenders”) can work, they don’t have the routing “smarts” of a real mesh network, and they can cause more problems than they solve. For a large house, a real WiFi meshing product like these will provide much better results without running Ethernet cables… of course, for the absolute best WiFi, there is no substitute for just running Ethernet and putting separate Access Points in each location you need WiFi. If you were clever enough to run Ethernet to the far reaches of your house before the drywall, all you have to do is plug in some dumb access points in the Ethernet – no need to mess with the indoor mesh.

The new Eero and Google WiFi products use apps to configure and control the network – I don’t know if there is a website option available, but I get the impression that the apps are the only way to control them. I don’t know about you, but my poor phone is “full” of apps, and I really don’t want another one.

So my own view is that these new players are not quite as good as what already exists in Open-Mesh, but, of course, your mileage may vary, Of course, they are being marketed like crazy, so you’re going to see them in the press all over the place.

What I think is important is that meshing WiFi is becoming mainstream, and, if you live in a large house, you don’t necessarily have to run Ethernet to get WiFi throughout the house.