Author Archives: billmoffitt

The Internet of Things (IoT) on the farm – part 1

tag_cloudI read a LOT about the “Internet of Things” (abbreviated IoT) is in the news lately; you probably have see it too, and there is a lot of excitement around it. And I would argue there’s good reason for that – it is going to change everything, perhaps more fundamentally than cellphones and, later, smartphones. But it is important to understand what the IoT is, what it is not, and how it will affect life on the farm.


Courtesy of Nest

The IoT is not a single thing or even a particular class of things; it refers to a new generation of devices that are connected to the Internet and perform some function, with little or no human interaction. There are already a LOT of good examples, from the Nest Thermostat to kid’s Arduino toys, from devices that can be handy almost everywhere like a network-connected lightswitch, to highly specialized devices like grain dryer controllers or irrigation controllers. I would argue that little of this stuff is new; the things we are seeing being touted as “IoT” devices are really the same as things we already have, just made smaller, smarter, and less expensive. Frequently a LOT smarter and a lot less expensive, which is important.arduino


Belkin WeMo WiFi Outlet

But the profusion of little, inexpensive, smart things all over the place is having effects we can’t fully understand or appreciate yet. The one thing we can predict with some certainty is that the people who understand these devices and put them to use intelligently will see tremendous gains, just as those who started using computers intelligently saw huge benefits. The question, of course, is, “How do I use these devices?”

Technical knowledge is much less important at this phase than imagination – in all honesty, the most technically competent people miss a lot because they are too invested in how things ARE, so they cannot understand how things COULD BE. So I pose this question to you: what on the farm could be made better (faster, cheaper, more profitable, or more enjoyable) by little computers with accurate little sensors (for light, heat, moisture, position, dream_farmmotion, and lots of other things) and robust built-in data communications infrastructure (WiFi)? What could you monitor? What could you control remotely (or even automatically), especially using the data you are getting from monitoring?

We’ll explore this more in future blog posts, but I would like to hear what you have to say, as well.

You can find Part 2 here, as well as a good post about sensor networks.

Saving money with AyrMesh

piggy-bank-1056615_640There are all kinds of new technologies and products available for farming – these new “AgTech” products hold real promise to change the practice and the economics of farming. But you have to evaluate them realistically to understand how they will help you improve your profit: increase revenue or save costs.

AyrMesh was designed specifically to help save costs on the farm, so it provides increased profits no matter what happens to yields and crop prices. There are several ways in which AyrMesh helps you reduce costs, directly or indirectly:

  1. Reduce the cost to simply move data – your cellphone (and maybe your tablet and/or laptop) has a cellular radio for data, and you pay a premium for using more than a minimal amount of data per month. By using the AyrMesh network, however, you can be disconnected from the cellular data network and save money you would have to send to the cellular companies.
  2. Employ new technologies that can save money – because AyrMesh is a standard, Internet-Protocol (IP) network, you can avail yourself of off-the-shelf products that just connect to your network. Examples include things like networked weather stations and soil sensor systems, but also grain dryers and irrigation systems. As security becomes an increasing concern on the farm, having an AyrMesh network allows you to quickly and easily place IP cameras so you can keep an eye on distant parts of the farm
  3. Be prepared for the future – new, time-saving and money-saving products are coming up fast, and you can be ready to put them to work. New autonomous vehicles, remote sensors, and remotely-operated machinery will be able to magnify the effort you put in on the farm, just like tractors and combines did in the late 1800s, increasing the profitability of farms.

But be careful: a lot of products being sold come with a “small monthly fee” to pay for a cellular modem to move data from the device to the company’s cloud servers. It’s a business model that works and it makes it easy to install new products, because the vendor doesn’t have to worry about setting up a network. However, as you adopt more and more of those products, the number of small monthly fees is going to add up fast, and none of them will work in fields without cellular connectivity.

Look, electronics and data aren’t going to grow the crops. But the information they can provide you can help you make better decisions, both season to season and day to day, to save money and increase yields. Smart investment in AgTech begins with thinking about the data – what you can use, how you will use it, and, most importantly, how you will get it from where it is generated to where it is useful. We are here to help with that last bit.

AyrMesh Field Hub – Solar powered to extend the network

frontWe have been asked multiple times how to extend the AyrMesh network beyond the availability of plug-in power. The key, of course, is solar panels and/or wind turbines, along with batteriessemi-front_closed to hold the power when the sun isn’t shining or the wind isn’t blowing.

Tycon Power has solved this problem for us by developing an integrated system just for the AyrMesh products: Hub, Receiver, or Bridge radio. The product to use is their RPPL-1212-36-30 unit. You can buy it directly from Tycon at their store site. This system with the 30 Watt solar panel will work in most of the country that receives an average of 3.5 hours per day or more – the red and dark orange bands on the standard insolation map. For areas in the light orange or yellow areas on that map, you will need to add a second 30W solar panel (with mounting bracket) or a wind turbine to keep the batteries charged.batteries

Tycon also makes larger systems for multiple devices. The RPST-1212-100-70 system will provide power for two or three devices – for instance, a Bridge radio and a Hub or two “back to back” bridge radios.

As with the smaller system, if you get less than an average of 3.5 hours of sunlight per day, you’ll need to augment the power generation of that system with an extra 70W solar panel (and mounting bracket) or the wind turbine.


Higher is better

What does it take to set this up? Two things: very rudimentary wiring skills to connect the batteries and the solar panel with the solar controller, and the ability to set up a strong mast or tower. In our tests, we used a 7′ tall free-standing pole, but, for practical use, you’ll want a much taller pole or tower, embedded into the soil with concrete. You need, of course, to get the radios up as high as practical, but at least 25 feet above any obstacles for maximum range. This may require the use of a pole with guy lines or even a tower.

semi-front_openThe system provides Power over Ethernet (PoE) for the radios, just like the power supplies that come with the AyrMesh products. The mechanical considerations (attaching the solar panel and battery pack to the pole or tower) is extremely simple, using either U-bolts or hose clamps.  Using this to extend your network out into your fields will enable you to use the AyrMesh Cab Hub to automatically move data off your in-cab computers and have WiFi coverage in your cab wherever you are on the farm.

If you have any questions about this, of course, please feel free to comment on this post or get in touch with us at [email protected].whole

AyrMesh and the IoT: the Edyn Garden Sensor

I have been saying for some time that the AyrMesh network is the vital element for enabling the “Internet of Things” (IoT) on the farm. Because of this, I supported the Edyn Kickstarter campaign, and my Eden Sensor finally arrived on Friday in a box about the size of one of my shoes. i have been eagerly awaiting it, because I believed the combination of the Edyn system and the AyrMesh network would be a very powerful one for the home gardener or small farmer.edyn_box_small

I pulled the box open and pulled out the device – I was very impressed by its relatively small size and apparent toughness – it feels nice and solid. I continued to pull apart the box to find the instructions and found… nothing else. Just cardboard. No instructions at all. Oops…edyn_unboxed_small

I took a look at the Edyn website and found very little, so I went back to the Kickstarter page and found the FAQ. It stated that the device is associated to the WiFi signal through the Edyn app, which is available for iOS or Android.

I pulled out my Android phone, went to Google Play, searched for Edyn, and found… nothing. (Note: that has changed in the last few days: the Edyn app is now in Google Play for Android devices).edyn_alone_small

So then I grabbed my wife’s iPad, opened the app store, searched for Edyn, and found… again, nothing. Then I realized it was only looking for iPad apps; I set it to look for iPhone apps and found it.

edyn_in_hand_smallI should point out, of course, that none of these things deterred me in any way: I’m the crash test dummy for new devices like this, so I expect it to be rough when I first see it. My goal is to experience these rough spots so you don’t have to!edyn_top_small

The device itself just comprises a molded plastic top, with a visible solar panel, and a metallic bottom probe with discs of metal and plastic at the bottom for the actual sensing application.

edyn_bottom_smallWhen I finally got the app installed on the iPad and got it started, I was taken through the process of creating an account and configuring the Edyn Garden Sensor. The Edyn is built with a VERY clever WiFi device called an “Electric Imp.” There is, obviously, no keyboard on the Sensor, so you have to get the WiFi configuration onto it somehow, and the Electric Imp uses a process called “Blinkup.” On the botton of the Sensor is a button and a small light sensor; you join the WiFi network (your AyrMesh WiFi network) on your phone or tablet, then type in the encryption passkey (from in the Edyn app. You then hold the screen of the phone or tablet close to the bottom of the Sensor, and the screen blinks to send the WiFi credentials to the Sensor. The Sensor then joins the network, checks into Edyn’s servers (much like the AyrMesh devices do) and then appears in the Edyn app.

I must mention that, in my case, the Blinkup process was not entirely smooth… the Sensor accepted the password from the iPad, and it actually associated itself with my Hub just fine – I saw it appear in my router’s DHCP table. However, it gave me an error message saying “Uh-Oh. There’s a problem on our end. Please try again.” I tried several times with the same result, then fired off a note to [email protected] They wrote back the following day, and, by that time, whatever the problem was was fixed and my sensor showed up in the Edyn app.

My Edyn sensor has been working just fine in my backyard for several days now – I have it in a pot with a palm I’m trying (unsuccessfully, so far) to revive. A few notes:in_garden1_small in_garden_2_small

  1. I hope they’ll at least include a QR code somewhere in or on the box that leads to some setup instructions. It’s odd to pull the device out of the box and find absolutely no supporting documentation.
  2. The outside temperature sensor appears to be inside the case. In the final screen below, you’ll see it indicates 102 degrees, but the ambient air temperature was about 80. The humidity sensor seems to work OK, though.
  3. I don’t have enough information to judge whether or not the soil information being provided is accurate. It seems to indicate an increase in soil moisture when I water and it indicates it dries out when I don’t. I haven’t had the soil tested to verify its accuracy about fertility.
  4. Edyn also has an irrigation valve product that connects to a garden hose for automatic irrigation. I don’t have one, so I cannot test that piece – it’s relatively simple technology, so I’d assume it would work well and setup would be the same.
  5. The Edyn system is currently really designed for gardening, not farming. If you have a garden or even a small vegetable farm, for instance, it might be quite useful, but I don’t think it would be very useful on a large, production farm.
  6. The Edyn system is supposed to be on sale in Home Depot and other gardening centers soon.

There is no question about it: the Edyn and AyrMesh systems work well together and should be of significant benefit to gardeners and even smaller farmers.

Here are the screens I went through in the setup process:


setup1 setup2 setup3 setup4 setup5 setup6 setup7 setup8 setup9 setup10 setup11 working

The state of the art in soil sensors – Farmx

As mentioned in an earlier post, we have been working with the RoyseLaw AgTech Incubator. One of the benefits of the program has been the ability to work with some of the most innovative companies coming up. This is one of those companies.

farmx_sensorFarmX, based in Tulare, CA, has launched its FarmMap solution in CA and is introducing FarmMap with special pricing for existing Ayrstone customers. To take advantage of this offer, please complete this form.

FarmMap is a low-cost smart farm automation tool that uses scientific grade instrumentation to give you access to all the information you need about your farm in simple, secure, all-in-one tool. The FarmMap’s cloud platform gives you constant, secure access to your data, recommendations and field health.

iphone_map_notificationsFarmMap’s system of soil probes gathers information across your acreage with 1 probe for every 10 acres and connects your farm to the cloud. Each FarmMap sensor probes captures key environmental, soil and plant health data in real-time.

FarmMap uses state-of-the-art machine learning techniques to uncover opportunities to improve productivity and reduce the cost of inputs, such as water and fertilizer. FarmMap gives you the confidence to make accurate decisions quickly, accurately, saves you time and gets rid of guesswork.

FarmMap BenefitsThis is another example of the kind of technology that is available at very low cost when you outfit your farm with an AyrMesh network – each field can be outfitted with a FarmMap gateway device to communicate with their soil sensors, and you can connect the gateways to AyrMesh components (Hubs, Receivers, or Bridge radios, depending on your network) to connect them to your network.

Click below for more information about FarmX and FarmMap:


Ayrstone in the RoyseLaw AgTech Incubator

RoyseLaw_AgTech-012For the last few months, we have been fortunate enough to be part of the RoyseLaw AgTech Incubator. Our involvement in the incubator many benefits, including access to top people in California business and agriculture as well as the Silicon Valley venture capital community. We expect our involvement to result in many benefits to us as we move forward.

royseThe most important reason we wanted to be part of the incubator, however, was to associate ourselves with some of the most interesting up-and-coming companies in agricultural technology. I would encourage you to check them out to see where “Ag-Tech” is going today.

One other benefit of the incubator is that we are part of the second annual Silicon Valley AgTech Conference on May 11. If you are interested in the future of agricultural technology and you’re going to be in Northern California, please attend the conference. There will be AgTech companies (like Ayrstone), investors, growers, and others with an interest in agriculture and technology.


An interesting new company – gThrive

ppt logogThrive is one of the companies I have been watching for a while, because I thought their technology was interesting. I think that the use of sensors for monitoring soil conditions is an excellent example of what technology can do for agriculture, but the existing solutions out there are simply too expensive for use outside of very high-value crops.

OnegStake_STK-51615-001gThrive took the approach of using modern sensor and microprocessor technology and mating it with low-cost packaging to create a new soil sensor with more “intelligence” at lower cost than anything currently available on the market – hundreds of dollars per probe instead of thousands of dollars, with more sensors on the probe than had previously been possible.

The probes are simply plastic stakes, each of which has several sensors, a low-power CPU, a battery, and a low-power data radio, which communicates with their gLink base station. The gLink base station must be connected to the Internet via either a cellular connection or WiFi. This means, of course, that it can be easily added to your AyrMesh network, allowing you to have soil probes in multiple fields without having to rack up massive cellular data bills.gThrive_CustomInstallation-001

All data from the stakes are uploaded through the network to gThrive’s web site, which you can access from anywhere with any Internet-connected device. It’s a simple, clean, efficient system, and they have just started selling their system at the recent World Ag Expo.

Seeing products like this come to market validates the reason we started the AyrMesh product line – to help farmers get more data, faster and cheaper, and be able to do more on the farm. Products like this can dramatically add to the value of your AyrMesh Wireless Farm Network, and vice-versa. We wish gThrive all the best and look forward to working with them and other companies bringing new network-connected products to the ag market.gThriveKit_ACPowered-001

(All pictures courtesy of gThrive)

Long Range WiFi: two approaches

AyrMesh HubWe didn’t invent the idea of putting WiFi on farms and ranches, although I think we’ve done a lot to popularize it. And it’s not really WiFi that’s important, it’s just having a farmwide network that you can connect to and move data with.

When we started, we realized there were two ways we could build out the farm wireless network, and that we’d need to support both ways. However, we had to start somewhere, and we knew that the best short-term “proof of concept” was using the mesh network approach: a bunch of high-power WiFi Access Points that are connected to the Internet and talk to each other using a meshing protocol. That’s what gave rise to the AyrMesh Hub.

Because the Hubs can be up to 2.5 miles apart, it allows you to extend your network out quite a ways from your home place, and that’s useful for a lot of people. It also allows you to “get in the game” for a minimal investment – a few hundred bucks for a Hub and a little time putting it up high and out in the clear gets you WiFi across your farmyard and out into your fields. Then you can extend the network from there with additional Hubs.

However, sometimes you just want to connect someplace into your network, and you don’t need to have WiFi. For those cases, a different approach is optimal: point-to-point microwave links, also known as “bridges.”

AyrMesh BridgeA bridge can use WiFi or a WiFi-like signal to connect two locations and pass data between them. Typically they are “Layer 2” devices, meaning that they work just like a long, wireless Ethernet cable. You plug one radio into your network (typically your router) and then plug the other radio into whatever you want to put on your network (a computer, IP camera, WiFi access point, etc.), and everything works just like it was plugged into your router.

The AyrMesh Bridge uses microwave radios that use the 5.8 GHz. band (used for 802.11 WiFi “a,” “dual-band n,” and “ac”), but they use a special “narrow-band” microwave signal that increases the range, reduces the effects of interference, and makes the signal invisible to WiFi “sniffers.”

Of course, if you are just connecting some distant device or devices into your network, you can also use an AyrMesh Hub and an AyrMesh Receiver. It will actually work the same way; the differences are:

  • The AyrMesh Bridge is just a wireless Ethernet cable that doesn’t provide a wireless signal usable by anything else. The AyrMesh Hub provides WiFi that other devices can use.
  • The AyrMesh Bridge is a “1-to-1” system, but you can have several Receivers talking to one Hub.
  • The Receiver can be up to 2 miles from the Hub, but the Bridge radios can be up to 5 miles apart.

It’s not necessarily an “either/or” thing. Several AyrMesh users are using the AyrMesh Bridge to reposition their Gateway Hub to the top of large structures (e.g. grain legs) to give the Hubs maximum range. A couple of people are using their Hubs for WiFi but providing connectivity to other buildings using Bridges (with the Hub and the Bridge radio mounted next to each other on top of the house or office). And you can use a Bridge connected to a Remote Hub to connect a device several miles away from the Hub.

There are a lot of folks out there selling wireless bridges – we think the AyrMesh Bridge is the best for one important reason: it’s the easiest to set up and use. No configuration is needed: you just connect both radios in the Bridge to your router. They download your configuration from and then all you have to do is mount them outside pointing at each other.

IP Cameras on the Farm: Part 3 – Using IP cameras for security


QNAP NVR, courtesy of QNAP

Now you know how to select an IP Camera, set it up on your farm, and view it from wherever you are, on or off the farm, which may give you a greater sense of security by itself.

However, you can’t watch what’s going on 24×7, and, with most cameras, you can’t go back and see what happened a couple of minutes ago (or last week). If you want to incorporate cameras as part of a security system (which may also include things like driveway sensors, indoor motion sensors, window/door open sensors, and other devices), then you should, at a minimum have some sort of recording, and probably some sort of motion detection on the cameras. What I have found to be best is some sort of system that is continuously monitoring the cameras, and, when motion is detected, it records the previous several seconds of video and keeps recording until after the motion stops. That way, I find, I get a nice, clear video of the mailman coming up to the box every single day (and, if I choose, a text and/or email with a picture of the mailman within a few seconds of his arrival).

But, seriously, if you are having trouble with intruders (people breaking into your storage sheds or stealing Anhydrous), getting notification and pictures of them is a good idea. For that, you need a Network Video Recorder (NVR). An NVR is a device that plugs into your network and monitors your IP cameras, allowing you to view several cameras at once and go back to see what happened at a particular time. Most modern NVR systems also have motion detection and multiple alarm functions (including email and tripping a relay to set off an alarm).

Swann DVR with cameras, courtesy of Swann

Swann DVR with cameras, courtesy of Swann

An NVR is different from a Digital Video Recorder (DVR), although both can be useful tools for farm security. A DVR typically has a number of coaxial inputs for cameras, so you can attach 4, 8, or 16 cameras to the unit using coaxial cable and it will continuously record the video from those cameras. Most modern DVRs also have an Ethernet port so you can connect them to your network and monitor the cameras from wherever you are. A DVR can be very useful anywhere you want several cameras in a single physical location, like your home, workshop, or storage shed, where you don’t mind stringing wires. Most newer DVRs can also detect motion send you an email or other form of alarm when they do.

Foscam indoor camera with storage - the little microSD slot under the antenna - courtesy of Foscam

Foscam indoor camera with storage – the little microSD slot under the antenna – courtesy of Foscam

Some newer IP cameras even have the NVR capability built-in, usually via an SD card slot. They store either still images or video to the SD card continuously so you can just “back up” while you’re viewing the cameras.

Almost all IP cameras have some form of motion detection, but many of them are effectively useless. There are three types of motion detection:

  1. Overall picture motion detection – this just looks for the number of pixels changing in the frame and alerts if that number rises above a certain level. Unfortunately, this is almost entirely useless, because, if the sensitivity is high, it will “alarm” every time the lighting changes slightly, and if the sensitivity is set too low, it won’t alarm at all.
  2. Setting a "zone" so the camera will alarm when the door is opened - courtesy of

    Setting a “zone” so the camera will alarm when the door is opened – courtesy of

    “Zoning” motion detection – this allows you to put rectangles into the camera’s frame and only alarm if there are changes inside those rectangles. This works better, but you still get a lot of “false alarms.”

    Object detection, courtesy of Sitehound

    Object detection, courtesy of Sitehound

  3. Object detection – this is an algorithm that can pick out moving objects in the video stream and distinguish them from changes in the background. This means that you only get an alarm when something moves, and you can set the size of the object that will set an alarm so you don’t get called every time a gnat flies by.

Most inexpensive cameras use the first type of motion detection, which means the on-camera detection is worthless. Almost all other cameras use the second type of detection, which is not useless but still not great. Some high-end cameras can do object detection, but they’re pretty expensive.

The better idea is to have your NVR software do the detection and alarming, rather than the camera. There are two ways to do this: using a dedicated NVR (a small computer running embedded NVR software) or running an NVR program on a desktop computer that’s on 24×7. There are advantages to either approach.

Using a dedicated NVR is simple: you set it up, add the cameras to it through the onboard user interface, and forward a port to it on your router so you can access it while you’re away. QNAP is a vendor that makes a large range of standalone NVRs that are compatible with a wide variety of cameras. In all honesty, I have never been able to evaluate one, but customers have reported good results with them. Synology has developed a pretty good reputations, also – both brands are generally available on Amazon.

The downside to the dedicated NVR is that only some cameras are supported (although the brands mentioned above support a huge number of brands) and that it is difficult to evaluate the software to tell how well it will work for you. The vendors don’t really provide much detail about how they detect motion, what options are available, and what the units can do.

Ubiquiti Cameras and NVR, courtesy of Ubiquiti Networks

Ubiquiti Cameras and NVR, courtesy of Ubiquiti Networks

Some camera vendors like VivotekGeoVision, and Ubiquiti sell both cameras and NVRs to work with their cameras in an integrated package. Going that way makes it easier to know your cameras will work the the NVR, but more difficult to evaluate whether you have the right cameras and NVR for your operation.

The other option for an NVR is to use an NVR program on a computer that’s running all the time. There are several of these programs, but the two most popular are BlueIris and SightHound.  BlueIris is less expensive and runs on any Windows PC; SightHound is more expensive, but has a number of important advantages:

  1. It runs on either Windows or Mac computers;
  2. it is very easy to install, configure, and use; and
  3. it features an advanced object-detection motion detection.

I’m an unabashed fan of SightHound – I have written about it before on this blog – although I have used BlueIris and it is also very good. I also like the Ubiquiti system (Note: Ubiquiti builds the hardware for the AyrMesh system), although I find their software to be a bit too complex for most users. It also integrates with their mFi sensors and switches for security and automation.

Dropcam - courtesy of Dropcam

Dropcam – courtesy of Dropcam

There is actually a third option – a camera that automatically loads its video to a “cloud-based” NVR. Dropcam is a system that uses nice, small, relatively inexpensive indoor cameras, which automatically send their video stream to their cloud servers, without the need for port-forwarding. I have also written about Dropcam before on this blog. The big advantages with Dropcam is that they are VERY easy to set up and use, and the company is now part of Nest (maker of the Nest thermostat), which is part of Google – they have the resources to keep this going and expand those products to do a lot more in the future. The disadvantages are:

  1. They currently only make indoor cameras; there is no outdoor option, and the cameras are not designed for outdoor temperatures.
  2. They charge on a per-camera basis for the recording function. They charge $10 per month/ $99 per year for the first camera and $5 per month/ $50 per year for each additional camera (that’s for 7 days of recording; they charges for 30 days of recording are 3x higher)
  3. There is no way to directly view the camera – the only way to view it is through the Dropcam website. This is not a big problem practically, but it does bug me a little. Even without a subscription, you can view the camera through their website and get notices when motion is detected, which is nice.

Whatever cameras and NVRs you choose, you’ll need to connect the cameras to the network, connect the NVR to the network, and make sure the NVR is “talking” to the cameras. You can then port-forward to the NVR (remember about this from the router series?) in order to access it from the Internet; that way you don’t have to port-forward to each of the individual cameras. You’ll need to fine-tune the sensitivity of each camera in order to get appropriate “alarms” for movement. You’ll also need to set the alarms up so they contact you appropriately. Setting up an email alarm is relatively easy, and all the cellular phone providers give you an email address that goes through as an SMS text message – for instance, on Verizon, if the phone number is 555-123-4567, you can email “[email protected]” That way you can get a text message on your phone whenever motion is detected.

So, now you have cameras set up in the critical parts of your farm, which you can view through your NVR, and you are set up to get alerts any time something moves in the field of view of those cameras. All of this, of course, is made possible because of your AyrMesh Network, covering your farm with powerful IP connectivity.

And there’s still a lot more you can do with the network… stay tuned!