An AyrMesh user recently made me aware of a relatively new product that’s now available: StepsGMS. StepsGMS is a WiFi-capable Grain Bin Management System that works with the AyrMesh WiFi system. In talking to the folks at StepsGMS, I realized that we had a lot in common. In particular, we both want to bring high-quality products to the ag market at the lowest possible prices. We are both focused on helping farmers improve productivity, and we both want to help growers maintain control of their farm data.
Eli Troyer, owner of StepsGMS, is a veteran in grain bin management. He realized that current technology allowed him to develop a much lower-cost grain bin management system using WiFi. He didn’t even know about Ayrstone at the time, but realized it would not be that difficult to get WiFi out to most farmers’ grain bins. His initial thought was that you could even use a cellular “hotspot” device if there was cell coverage nearby.
However, if you have an AyrMesh network, you can use the StepsGMS products with your existing Internet connection and avoid any additional cellular subscriptions.
Although they are primarily focused on grain bin management, their products have uses well outside just that. Their WiFi Temperature Sensor can be used to measure temperatures anywhere on the farm or ranch: bins, tanks, piles (hay, silage, manure, compost etc.), even soil temperature. The Smart Switch (comes in Indoor or Outdoor packages) can be used to turn on and off anything on the farm – ventilation fans, lights, heaters, pumps, etc.
These products are controlled by their app (available for IOS or Android devices) – you can see demos of the app and what it can do on their Facebook page.
We are very proud to introduce the second member of our new “Compact” product line – the AyrMesh ReceiverC.
This new Receiver combines most of the power of our “regular” Receiver with a much smaller form factor. It performs at least as well as the “big” Receiver at distances under 1 mile, and still works well at distances up to 2 miles from the nearest Hub.
We were motivated to bring out the AyrMesh ReceiverC by observing that the vast majority of our customers were mounting AyrMesh Receivers within 1 mile of the nearest AyrMesh Hub, and the power from the AyrMesh Receiver was actually overwhelming the AyrMesh Hub. While we have the ability to reduce the transmit power of the Receiver (and the ReceiverC, by the way), the higher-gain antennae on the Receiver sometimes made it impossible to put it on outbuildings very near the Hub.
The ReceiverC is actually a more flexible version of the AyrMesh Receiver, and, as an added bonus, actually is a little less expensive. Please take a look at it for your next AyrMesh addition.
We are very proud to announce a new product – the AyrMesh Hub2x2C.
The Hub2x2C is something of a departure for us – a more compact, slightly lower-power Hub with lower-gain antennas, built not for absolute maximum range but to provide continuous WiFi for smaller to medium-sized rural operations.
The AyrMesh Hub2x2C is a response to a problem we have been seeing from our customers: the ability to put Hubs 2.5 miles apart is great for covering a lot of acreage, but the “normal” Hubs don’t work well if they are LESS than 1 mile apart – they overpower each other. However, at 1 mile or more apart, the Hubs are really providing “pools” of WiFi around them, because lower-power devices may only have a usable range of a few hundred yards. There are frequently areas between the Hubs that are, effectively, uncovered for a lower-power device.
The new AyrMesh Hub2x2C can be placed half a mile apart, meaning that even a device with a maximum range of 400 yards can have continuous coverage, passing cleanly from one Hub to the next at the extent of its range.
When we first developed the AyrMesh Hubs, the predominant WiFi device was a large, sturdy laptop, with a “normal” strength WiFi radio and fairly large (although hidden) WiFi antennas. We were actually surprised at how far the Hubs allowed a device like this to communicate – typically half a mile, sometimes further.
As WiFi cameras came out, they used similar WiFi adapters as laptops and generally had similar range. Many had (and still have) removable external antennas that can be replaced with higher-gain antennas to even longer range.
However, now the predominant WiFi device is the smartphone, which uses a lower-power WiFi radio to save battery power, and has smaller antennas to minimize their size. And, on top of that, we’re seeing a new generation of “truly wireless” cameras run off batteries – again, using lower-power WiFi radios and frequently without an option for a higher-gain antenna. While a standard laptop might be able to use the Hub from half a mile or more away, these low-power devices will typically only have about half that range – 400 yards or so.
In the fields of a large farm, the problem of limited WiFi range is solved by use of the AyrMesh Cab Hub2 – the Cab Hub2 is easily fitted to tractors, combines, sprayers, pickups – even utility vehicles – to keep the vehicle and occupants in touch with the stationary Hubs.
On smaller farms and rural businesses, however, workers are frequently on foot, so the Cab Hub is not very practical.
The new AyrMesh Hub2x2C Hubs can be placed as close as 800 yards apart (even closer in some instances – we can reduce the transmit power) to completely cover an area in WiFi. Note, however, that they can still be positioned up to 2 miles apart (with reduced bandwidth), and you can still put up to three “circles” of Hubs around the Gateway Hub. So the new Hub2x2C can still be used to “light up” thousands of acres.
One question that has come up is the range from the new Hub to “ordinary” WiFi devices – the answer is that, at least in our testing, it is unchanged relative to the “big” Hubs. The range to phones, tablets, laptops, etc. is primarily determined by the transmit power and antenna quality of the device, not the Hub – we actually found no measurable difference between the performance of the Hub2x2C and the Hub2x2 and Hub2T for WiFi – the only real difference is in meshing with other Hubs.
Please have a look at the new Hub2x2C – it’s a great option for most rural WiFi users!
This is a bit of a departure from our other blog posts – I like to talk mostly about up-to-the minute practical stuff you can start using right away. Today, however, I’m going to point out some upcoming technology trends that appear to have no connection to farming, but I think will end up being profoundly useful.
WiFi 6
WiFi 6 is the new marketing name for 802.11ax, the next generation WiFi standard. Briefly, we have seen 802.11b (2.4 GHz only, WEP security which did not turn out to be secure at all, up to 11 Mbps), 802.11a (similar to b, but on 5.8 GHz and up to 54 Mbps), 802.11g (2.4 GHz. with OFDM for up to 54 Mbps and WPA for real security), 802.11n (dual-band with MIMO for greater bandwidth and range and even better security with WPA2 – this is what the AyrMesh Hub2 series is based on – now re-named “WiFi 4”), and 802.11ac (also called “WiFi 5” – 5.8 GHz only with fallback to 802.11n for 2.4 GHz, with MU-MIMO at the access point to optimize bandwidth to more devices and wider channels to increase bandwidth over short range – not useful at all for long-range outdoor use).
802.11ax brings several improvements to WiFi that I think are important:
OFDMA and 1024-QAM modulation for greater bandwidth through the same channel bandwidth. For maximum range (given statutory limitations in total output power) you want to use the narrowest channel bandwidth possible. This allows us to push more data through the same channel bandwidth.
Breaking the channels into smaller pieces to make OFDMA work, called “Resource Units” or “RUs.” This also opens the possibility of using fewer RUs to create even narrower channels for longer-range, lower-bandwidth connections, similar to LPWAN networks like 802.15.4 (Zigbee, Threads, etc.) or LoRa.
Target Wake Time (TWT) – this is a trick borrowed from 802.11ah and LPWAN systems – it allows devices to sleep efficiently and coordinate with access points to shorten the amount of time the radio has to be on, drastically reducing the amount of power required, especially for devices that are transmitting small amounts of data at sporadic intervals (e.g. sensors and other IoT devices).
Download and upload MU-MIMO – maximizing the bandwidth between the AP and the client in both directions (not just transmitting from the AP to the client).
Taken together, these improvements in WiFi 6 will improve on-farm WiFi in two important ways:
Increasing the bandwidth available (through OFDMA and MU-MIMO) – just making everything faster and increasing the value of the network overall.
Being able to use the WiFi network as a low-bandwidth network like Zigbee or LoRa with battery-operated sensors and actuators, so a grower would only need a single wireless network for all their needs.
Now, the truth is that you can use your WiFi network for sensors and actuators today, and devices like the Espressif ESP-32 make that relatively easy and very inexpensive. But it still takes a lot more power to use a WiFi radio than, for instance, a Zigbee or LoRa radio, so you must have either much larger batteries or some form of external power (e.g. solar panels) for WiFi.
WiFi 6 should overcome these shortcomings, which makes us very excited about it. The 802.11ax standard has just been ratified by the IEEE, and we are seeing indoor equipment already available. As more specialized 802.11ax equipment becomes available (especially high-power products and products analogous to the ESP32) we will be watching very closely.
Edge Computing
As I think everyone has seen, all data is now going to “the cloud” – servers on the Internet. This is generally a good thing – I want to make sure all the data I am going to need in the future is safely stored in a class 5 data center that’s not going to fail.
But there are two primary places this paradigm files: one is for cases where ANY latency (delay between sending a request to the server and getting a reply) will slow down operations, and the other is where Internet access is slow, intermittent, or not present. Both of these conditions apply to farming: low latency is vital for enabling farm machinery autonomy, and, despite all the talk about it, rural Internet connectivity is still, generally, awful.
At the same time, we are seeing the next generation of processors for mobile devices coming out that have higher performance than the “top-end” CPUs of a few years ago, while consuming tiny amounts of power. Since they dissipate so little power, they can be housed in more sturdy enclosures requiring little or no air circulation – in other words, deployable on the farm!
I can easily imagine a “farm server” that comes in a small, sturdy box that you plug into the wall and connect to your router and that provides services like:
Security- monitoring and recording scenes from cameras on your property, alerting you to events happening on the farm, turning lights on and off, and even locking and unlocking doors and gates.
Monitoring and automation – checking and storing readings on sensors, using rules to automate operations (starting an irrigation system, filling tanks, alerting when a grain bin or hay bale is too warm).
Communications – providing connection services for VOIP and/or messaging apps on phones.
Autonomy – providing coordination to autonomous vehicles operating in your fields.
This approach also has the advantage of increasing the grower’s control over data – it can stay on the farm’s server, be backed up to “the cloud,” or backed up the old way (to USB sticks, for instance).
Autonomy
I have alluded to this a few times in this article, but, living here in Silicon Valley, I see autonomous cars creeping around on public roads all the time. The problems of enabling autonomous vehicles on the farm are DIFFERENT, but not WORSE, than running autonomous cars on public roads.
The first problem is one of functional safety – ensuring that farm equipment is inherently safe. Very simply, farm equipment is dangerous, and a 50,000-lb. combine churning through a field or a sprayer buzzing along at 25 MPH constitute real threats to anything that gets in front of them.
However, LIDAR, RADAR, stereoscopic cameras, and other technologies can help machines “see” their environment very effectively, and the prices of those technologies (and the computing power to effectively combine their inputs in real time) is coming down dramtically. We are seeing some very interesting, practical examples in startup firms (GUSS, Swarmfarm, SmartAg, DOT), and we expect to see a lot more coming.
Conclusion
As I said at the beginning, this post is about stuff that’s not directly applicable to farming, but probably will be soon. Ten years ago I could have written about how smartphones will change life in farming, and a lot of people would have laughed at me. Now I don’t know anyone who doesn’t go out without a smartphone. What will be next?
We were intrigued and excited by a recent press release from Land O’ Lakes announcing that their retail operations would be installing WiFi for the use of their customers. In the best of times the rural ag retailer can be a lifeline for local farmers; in these difficult times, offering services to help local farmers and their families keep connected and work effectively, even if remotely is absolutely commendable.
We salute the Land O’ Lakes leadership and stand ready to assist any of their affiliated retailers in deploying WiFi on their rural locations.
Whether you’re a farmer needing to have connectivity in the farm office (and perhaps share your connection with a neighbor in need) or a rural business wanting to help your employees and rural communities stay online, Ayrstone can help. Just drop us an email at support@ayrstone.com and we’ll work with you.
We are pleased to announce the availability of the new AyrMesh Cab Hub2, designed for use with a wide variety of farm equipment: tractors, sprayers, spreaders, harvesters, trucks, utility vehicles – just about anything that rolls and has a 12 volt utility plug.
The AyrMesh Cab Hub2 is a variation of our AyrMesh Hub2x2 design, with two high-gain magnetic mount antennas to provide MIMO (Multiple Input, Multiple Output) for high bandwidth and better signal integrity.
This new model of the AyrMesh Cab Hub combines the best qualities of our previous model of the Cab Hub – ease of setup and use – with improvements to make it even easier to set up, as well as significantly better overall performance.
We have been trying to bring out a MIMO version of the Cab Hub for quite a while, but we kept running into problems with the radios we were trying to use. This radio, however, passed all our tests with flying colors and has been rock-solid.
Because it is based on the same weather-resistant design as the Hub2x2, the Cab Hub2 can be used on enclosed cab machines or machines without a cab – open-cab tractors and even utility vehicles and ATVs.
The Cab Hub connects with the stationary Hubs in your AyrMesh network and provides both WiFi and Ethernet connectivity to your vehicle and the area around it. It even connects with other Cab Hubs to extend your WiFi network where you may not have stationary Hubs.
As Machine-to-Machine or M2M communications becomes increasingly important, the Cab Hub2 provides a simple, high-bandwidth, reliable way to connect vehicles to each other and to external servers, on the farm or in the cloud. Meshing WiFi is faster and more reliable than cellular, and available anywhere it’s needed without carriers or subscription fees.
As autonomous farm vehicles become available, M2M communications will become even more vital to farm operations. For that reason, we are also offering the Cab Hub2 in OEM packaging for integration into new autonomous platforms and products. The product is available at a board level up to the complete product, according to the integrator’s needs.
We firmly believe that meshing WiFi is the only communications solution that enables autonomy on the farm – please contact us today to talk more about your autonomous solutions and needs. At the beginning of this article I said the Cab Hub is good for anything that rolls – but we’re talking to folks who make things that fly, too!
After over a year, we are happy to announce the new version of the AyrMesh Hub2x2!
The new Hub2x2, just like the older model, offers twice the bandwidth
(speed) of the single-antenna Hub2T and Hub2n. However, this new model
offers more transmit power along with high-gain antennas for maximum
range – the same as the Hub2T.
This new model of the Hub2x2 has the antenna jacks solidly molded into the case for maximum durability, with durable, high-gain antennae very similar to the antenna on the Hub2T.
We strongly recommend the Hub2x2 as your “Gateway Hub” – the Hub connected to your Router as the origin of your AyrMesh network; for Remote Hubs we now offer either the Hub2x2 or the Hub2T.
In our testing, we have found that the new Hub2x2 delivers up to 65 Mbps to a 2×2 client (as tested with a Samsung Galaxy S10), and over 30 Mbps as a Remote Hub 2 miles from a Hub2x2 Gateway Hub, so it’s much more capable as a Remote Hub than the older Hub2x2 model – faster than the Hub2T.
The one big difference between the Hub2x2 and the Hub2T is in the amount of power needed – the Hub2T requires only about 4.5 Watts, but the Hub2x2 needs about 8 Watts. For this reason, we continue to suggest the use of the Hub2T in cases where power is an issue, like a “field Hub” powered by a solar-panel battery pack.
The new Hub2x2 is available right now in the Ayrstone store – please check it out today and let us know what you think!
We are proud to announce that the AyrMesh Bridge is once again available from the Ayrstone Store and Amazon.com.
The AyrMesh Bridge is just what it sounds like: a very simple-to-install, easy-to-use wireless bridge, consisting of two microwave radios – one connected to your network and the other connected to something you want attached to your network. It’s like a wireless Ethernet cable – up to 5 miles long!
The AyrMesh Bridge is useful for a wide variety of applications, including:
Connecting a Gateway AyrMesh Hub to your router when the Hub needs to be mounted more than 100 meters from the router – e.g. on top of a grain leg or hill, at a neighbor’s house, or in the middle of your farm when your Internet access is at one of the edges.
Jumping your AyrMesh network across neighboring fields – take off from one Hub at the edge of one field and connect a Hub at the edge of a distant field.
Just connecting a device or building on the farm to your network when you don’t need outdoor WiFi (you can use an IndoorHub connected to the Bridge for Indoor WiFi).
As the title suggests – this is just the beginning of the “It’s Back!” series from Ayrstone. Stay tuned!
One of the things that concerns us most at Ayrstone is the issue of broadband Internet connectivity in the Rural U.S.
AyrMesh, of course, doesn’t provide Internet connections – our business is helping you extend your Internet connection across your property ONCE YOU HAVE THAT CONNECTION. AyrMesh can help in some cases: for instance, having an AyrMesh network can let you use an Internet connection on one part of your property far from your home or farm office, and extend that connection all over your property. For instance, some of our users were only able to get satellite coverage at their homes, but bought AyrMesh products so they could connect to Cable at the other end of their property and extend that to their homes, offices, and other on-farm buildings. The result: fast, low-latency Internet coverage across their property.
But having that first connection to the Internet is critical, and there are large areas of the rural U.S. where there are no good options (and, in some cases, no options at all) for connecting to the Internet.
I want to quickly discuss some of the connectivity ideas that are being talked about now and talk about the pros and cons of each. NOTE: since we don’t provide Internet access, and we’re really not looking to get into the business, so we don’t have a dog in this race. So this is an unbiased and fairly dispassionate assessment of these products and technologies.
Whitespace
I am continually encouraged that no less of a technology company than Microsoft is working on this problem, and has been for a few years now. But their “solution” (fixed wireless over “white space” – unused TV broadcasting frequencies) just expands the solutions available for Wireless Internet Service Providers (WISPs) in rural areas with solutions that are unable or barely able to deliver the current definition of “Broadband” (25 Mbps). They all depend on UHF radio spectrum, which is strictly a “line of sight” (or, more technically correctly “>60{8fd1ffa65f67a2e931916b3c1288d51eed07dc30586a565c92d055673de7c64e} clear Fresnel zone”) medium. Now, whitespace UHF goes all the way down to under 500 MHz – lower than LTE at 700 MHz – which helps a lot with things like tree crown penetration. There have been breathless articles published with “helpful diagrams” showing whitespace radios effortlessly jumping over hills – just to be clear, that’s just not how radio works. The only way radio “jumps” over hills is to be bounced off the ionosphere, and only relatively long-wave radio signals (e.g. AM radio) can do that. The problem is that the data-carrying capacity of those signals is in the tens of bytes (bytes, not Kilobytes or Megabytes) per second, several orders of magnitude less than is needed for Internet access.
So – whitespace is a useful tool in the hands of rural WISPs for expanding fixed wireless coverage, but it’s not the magic bullet. And, unfortunately, if you define “broadband” as 100 Mbps or higher, it’s not even broadband.
Cellular – 5G
I just laughed at a friend who told me that the rural wireless problem is solved, because we’ll have ubiquitous 5G cellular coverage soon. It’s a great story, and Cisco has been pushing it pretty aggressively (through their “5G Rural First” campaign, among other outlets), but, I’m afraid, it’s far from accurate.
First off, the real promise of 5G involves the use of “FR2” frequencies, which are 24 GHz. and up, with “perfect line-of-sight” ranges in the hundreds of yards and almost no ability to penetrate trees, walls, and other obstructions. Placing towers every few hundred yards across rural areas is not going to happen any time in the forseeable future.
Now, 5G also utilizes the existing cellular frequencies (700, 800, 1900 MHz. in the U.S.) and improves the efficiency of those frequencies to increase throughput up to 50{8fd1ffa65f67a2e931916b3c1288d51eed07dc30586a565c92d055673de7c64e}. So, if you have LTE (4G) access now, you could see the speeds increase when your carrier and you move to 5G, which is a good thing. But the coverage will not change appreciably, so it’s FAR from revolutionary.
Bottom line – cellular remains a valuable way of accessing the Internet, both via mobile (cellphones, etc.) and fixed installations. We have numerous customers who have set up fixed cellular installations on a hill (with a solar power system and a yagi antenna pointed to the nearest cellular tower) and used AyrMesh to spread that connectivity across fields and to homes and farm offices, and 5G will help with that – a little, if you’re lucky.
LPWAN
One of the popular topics around rural wireless is the use of Low-Power Wide-Area Networks (LPWANs) like LoRa and Sigfox. These technologies are narrow-banded UHF data radios that can provide low-bandwidth (tens to hundreds of thousands of bits per second – under 1 Mbps) wireless signals over very large areas. The narrow bandwidth allows the signals to go much farther than wide-banded cellular or WiFi signals, but they don’t carry enough data to be anywhere near broadband. They are primarily aimed at enabling battery-operated sensor networks.
There are carriers deploying these technologies – Sigfox has a good coverage map (scroll all the way to the bottom of the list for the U.S.) and companies like Senet are rolling out LoRa coverage in rural California, for instance. However, what you see is that these are primarily urban technologies – there is just a lot more opportunity to connect things in urban environments, so that’s where the investment in infrastructure is going.
We also see some large ranches out in California setting up private LoRa networks for soil sensors. Those networks use some other form of Internet connectivity to move the data to the Internet, but it’s a way to get the sensors out in the fields without waiting for a company to set up towers and bring service. The LoRa gateways typically have an Ethernet port which can plug directly into the LAN port of a router or an AyrMesh device.
Other Fixed Wireless
Every so often I run across an article espousing some other wireless spectrum that can be used for rural wireless access – here’s one talking about using lightly-used satellite C-band frequencies. C-band is, roughly speaking, 4 GHz. to 8 GHz., so it is potentially a high-bandwidth solution (note that 5 GHz. WiFi like 802.11a, 802.11ac, and 802.11ax are within C-band) but also a very strictly line-of-sight technology. I would hate to see too many WISPs start using C-band, because some of the rural bars I hang out in use C-band antennas to pull in “Free-to-air” TV signals, and too many local C-band data links might fuzz up the picture of the Brazil-Uruguay soccer match. However, all these frequencies might eventually end up in use to help WISPs expand their reach into rural areas – a good thing, but, again, not revolutionary.
Satellite
Today there are two main choices for satellite broadband internet coverage: HughesNet (EchoStar) and Exede (ViaSat). Both offer broadband coverage, as long as you have a good view of the southern sky, but both services suffer from two problems:
Data caps – after you have transferred some amount of data, they will either charge you extra or limit your access speed, and
Latency – it simply takes about 1.5 seconds to get the data up to the satellite and back down to Earth, which makes “real-time” applications like telephony difficult.
These services use Geostationary satellites that are far out in space so they can orbit the earth at the same speed that the Earth is turning, so they appear stationary relative to the planet’s surface. That way you can have the dish on the roof pointed to the south for constant connectivity. If there’s no WISP that can service your farm, satellite may be your best option.
There has, for some time, been a second form of Satellite internet access, using what are called “LEOs” – Low-Earth Orbit satellites. The old Iridium phones use a network like this network for very low-speed messaging and voice.
Lately, more companies have taken an interest in this – OneWeb and SpaceX are sending hundreds of satellites into orbit with the goal of providing terrestrial wireless Internet coverage, and there are many others who want to get in on this – both for high-bandwidth Internet connectivity and low-bandwidth IoT connectivity (like LoRa or SigFox, but without the towers…).
Will these become a viable option for the farm? I’ll bet one or more of them do… some day. Just not next week, or probably next year.
Wires and Fiber
If you live close enough to town, you may have access to DSL or cable internet service, which can provide speeds of up to 100 Mbps (sometimes even more). And a lucky few rural residents have fiber access, which can provide up to 1 Gbps (1000 Mbps) service, and potentially more.
For those who have access to fiber, it’s unquestionably the best option: high speed and lowest latency (time from your farm to the Internet). Cable and DSL are the next-best options. Fixed wireless (WISPs) and fixed cellular are the next-best options, and Satellite is generally the last choice for Internet access. That said, we have a LOT of AyrMesh customers with Satellite Internet access – it’s the ONLY option in a lot of rural areas.
So…where next?
Here’s the thing – cellular, fixed wireless, satellite, and even cable and DSL are barely able to reach modern broadband speeds of 25 Mbps, and few can reach 100 Mbps.
That’s not going to be enough very soon – 100 Mbps is going to be the absolute minimum, and everyone is going to expect 1 Gbps or faster Internet. LEO satellites may be able to provide that in the future, but, at the moment, the only option for that speed is fiber.
There are a lot of initiatives to improve rural broadband service – state, county, and even local governments have created incentives, and the USDA has had numerous programs over the years, with the 2019 program the biggest so far.
However, these programs have historically prompted existing service providers to extend their coverage, whatever it is, marginally into more rural land. That helps, but it’s not getting us to 100-1000 Mbps for all farms.
Putting fiber into rural roads is going to be disruptive and expensive, but it’s likely to be the only way to get the kind of bandwidth that will be required for modern homes and businesses. Many communities already have conduit placed under roadways, ready for fiber, and many areas have miles of “dark fiber” that can be utilized. Encourage local governments and businesses to utilize the resources available to bring true broadband (100 Mbps and more) out to rural farms – moving forward, it’s going to be as important as electricity in keeping our agricultural industry competitive, so this should be the equivalent of the Rural Electrification Project.
Whitespace, C-Band, and 5G may provide good stopgaps, depending on where you are, and LEO satellite Internet may (or may not) eventually provide gigabit speed wireless connectivity – obviously, I’m hoping it does, but it’s not going to be this year or next. Our recommendations are as follows:
Get good Internet connectivity however and wherever you can.
Use AyrMesh to “light up” your farm with WiFi (OK, that’s a bit self-serving, but, hey, it’s our blog…)
Work in your community to bring optical fiber connectivity to your farm. If you’re close enough to the nearest fiber distribution center, it might not be too hard, but, in general, this is expensive.
There is an image of farming – bucolic, peaceful, unfettered by the concerns of the technological age. It’s lovely, and many of us indulge it to some degree… but it is patently false. Agriculture is an industry moving quickly on the technology curve as markets demand more, higher-quality, and cheaper food and grains. Specialized implements, higher-horsepower machines, GPS steering, variable rate planting and spraying, and the cellphone have all had an impact on farm productivity. But that’s not all.
Courtesy of Waymo
The Robots are coming.
Look, anybody who has sat in a tractor or combine moving through the field by itself using AutoSteer has to have thought, “Do I really need to be here?” In various cities around the U.S., we have been witness to Google vehicles (and others) happily (if sometimes slowly) wheeling themselves around town, their human handlers typing away on their laptops. If they can run sedans on public roads, they can run a tractor down a row of corn. There are a lot of questions about what the first (big) bunch of farm robots will be doing, but the Japanese have been using almost completely autonomous mini-tractors for rice transplanting for years. There are a lot of people and companies testing robots around the world for farming – big ones and little ones.
Courtesy of CNH
We have been interested in robots on the farm because we had a vague sense they need a lot more data connectivity than is available in most places now. So I read this article with interest; to quote: “Internet access is a problem,” [Scott Shearer, professor and chair of Food, Agricultural and Biological Engineering, Ohio State University] said. “We need 10 megabits per second connection speed.” Data-gathering tools today can capture gigabytes of information that must be able to flow back to the driverless machine quickly and easily; and the machine must be able to communicate to a central location too.
In some places, cellular connectivity may be enough, but, as discussed earlier in this blog, we don’t expect cellular service to improve dramatically in rural America. And it’s going to still be expensive.
Our modest proposal: set up an AyrMesh network on your farm today for long-range WiFi. And be ready for the robots!