Tag Archives: ayrstone

Introducing the New AyrMesh Hub2T

We are pleased to announce the new AyrMesh® Hub2T.

The AyrMesh Hub2T is a direct replacement for the Hub2n, but with some important differences. It meshes with the Hub2n and any other AyrMesh “Hub2” products.

First off, the Hub2T is a lot bigger than the Hub2n, with a much bigger antenna and a tougher stainless steel mounting bracket. The bigger antenna improves the performance of the Hub, while the new bracket just makes the entire Hub more stable and reliable, whether it is mounted on a pole or a flat surface.

Paradoxically, the new Hub2T has a little less radio transmitting power (about half a watt vs. almost a watt for the Hub2n), but it performs better than the more powerful Hub2n. Why? That big antenna! Reducing the transmitting power allows us to use twice as powerful an antenna, and (at least to a degree) a higher-gain antenna is better than more transmitting power. Power allows the Hub to “shout” longer distances, but a higher-gain antenna enable the Hub to both “shout louder” and “listen better” – resulting in better overall performance.

The other interesting change is the addition of a “gland” on the bottom of the radio. This gland makes it a bit trickier to install the Hub, but it protects it from water splashing up from below. This addresses concerns we have heard from some livestock operators who want to put Hubs near livestock pens or in milking parlors or farrowing houses, but worry about having to spray water around the Hub. We still don’t recommend spraying water directly up at the Hub, but this Hub will better withstand inadvertent sprays of water from below.

The Hub2T also uses less power than the Hub2n, so it is better for solar-powered field installations – if you have experienced “dropouts” in winter due to low batteries on the solar system, the Hub2T will work better (although that may also be a sign you need to replace those batteries…)

Should you replace your Hub2n with a Hub2T? In most cases, no – you’re not going to see enough of a difference in performance to make it worthwhile. The only exception is where there is a danger of water splashing up from beneath the unit.

But, if you are just starting your AyrMesh network, and as you expand, the AyrMesh Hub2T will be a low-cost, no-hassle workhorse, whether it’s on a building or out in the field.

Quick Note: “5G” technology on the farm

I have a Google Alert for “Wireless Farm” – I get about an article a week (and many of them are about wireless technologies for “server farms” and other odd things). But today I got a link to this article about “How 5G will impact the future of farming.” Intrigued, I clicked it to find a puff-piece about how Deere wants better wireless connectivity so that combines can “talk” to each other via “the cloud,” pointing out that it can take up to a minute with current technology for one combine to upload its data to the cloud, then the other combine to download that data and act on it. A couple of points here:

  1. “5G” mobile technology is based on “millimeter-wave” bands – over 20 GHz. (20,000 MHz.). Current LTE is based on 700 MHz. radios, and previous mobile data technologies (2G/3G) were “piggybacked” on existing 800 MHz. and 1900 MHz. radios. The range and, in particular, the ability of a signal to penetrate solid objects varies inversely with the frequency. So, to have 5G covering the areas cellular covers today requires a MUCH higher density of cellular towers than we have; to have it cover all of the rural U.S. will require thousands and thousands of new towers, a huge infrastructure investment
  2. As I have mentioned previously, the vast majority of cellular infrastructure investment is happening (and will continue to happen) within cities and towns, where the density of opportunities for subscriber revenue makes it profitable.
  3. Within the article, however, is this paragraph:

The term “5G” refers to the fifth-generation wireless broadband technology based on the 802.11ac standard. The packet of technology will bring speed and coverage improvements from 4G, with low-latency wireless up to 1GB/s.

802.11ac is WiFi, not mobile (cellular) technology. Specifically, it is the current generation of WiFI using the 5.8 GHz. (5,800 MHz.) radio band.

And here’s the point: “5G” mobile technology is not going to have an impact on farm operations in the forseeable future. But you can have multi-megabit WiFi technology on your farm TODAY – and you don’t have to wait for your friendly cellular carrier to put up a zillion towers. FURTHERMORE, since your AyrMesh system puts all the devices onto YOUR OWN Local-Area Network (LAN), everything on the system can just talk to each other – they don’t have to upload to the cloud and download from the cloud or anything like that. Your combines can “talk” to each other and your trucks, you can automate processes and enable autonomous vehicles – NOW – with an AyrMesh WiFi network.

 

Security and the IoT

As you know, I think that the “Internet of Things” (IoT) has enormous potential for the farm. But we have all been recently reminded of the problems we are facing as BILLIONS of new devices come on to the Internet – Friday October 21, the IoT literally broke the Internet.

This event has been called the “Mirai botnet attack.” This is an extremely important event, because it used IoT devices to effectively bring the Internet to a stop for several hours on Friday, October 21. Even Ayrstone was affected: we use Zendesk for our customer support portal, and it was unavailable off and on on Friday.

This attack was innovative in two ways: first, it did not attack the affected sites directly, but rather attacked the Domain Name Servers (DNS, the servers that turn domain names like ayrstone.com into IP addresses like 104.24.21.15) of Dyn.com, making a huge number of websites, including Zendesk, Twitter, and others unreachable, even though they were working just fine.

But the most important innovation was the way the attack was done – using a Distributed Denial of Service (DDoS) attack from IoT devices. DDoS attacks work by sending a huge amount of data to a server from a large number of devices on the Internet, overwhelming the server and causing it to fail. Up until now, the “botnets,” as the devices sending the data are known, have mostly been personal computers infected with viruses that allow a remote user to control them and cause them to send out streams of data to the target server.

As I mentioned, however, this attack was different, because it used IoT devices – IP cameras, routers, wireless networking devices, and other little devices that people don’t see as being “computers.” But your router or IP camera has a lot more computing power than the powerful desktop computer you had just a few years ago.

Hackers were able to access these devices and install “botnet” software on them because – and this is THE IMPORTANT THING – the passwords were NEVER CHANGED from the defaults. For instance, many devices come with a default username of “admin” and a default password of “admin” or “password.” If those are not changed and they are exposed to the Internet, they are an open invitation to hackers.

Now, most of the devices on your network are NOT currently exposed to the Internet – they are safely hidden from the Internet by your router’s NAT firewall. But it is still important to change the default password on devices, and, if you have “port-forwarded” to any devices to make it accessible via the Internet, it is DOUBLY important to make sure it has a STRONG password to protect it.

Ayrstone products, of course, are protected because the username and password for each device is set from AyrMesh.com. The only way an AyrMesh device can have the default username and password is if you don’t have an AyrMesh.com account, and we regularly disable devices that are not checking into an active account. However, even at that, AyrMesh devices should always be used behind a router’s firewall and not exposed to the Internet.

These devices are incredibly useful when used properly, but you have to take some minimal precautions to keep them safe. More information about the Mirai botnet attack and security of IoT devices can be found in this article and elsewhere.

This attack is a good reminder of three things:

  1. Make sure you always use good passwords (long, not a quotation or word) on ALL devices and keep those passwords secret,
  2. Don’t expose devices to the Internet unless you have to, and
  3. Purchase networking/IoT products from reliable vendors who can update the firmware to close vulnerabilities, preferably automatically and over the network. If not, make they make new firmware available to close holes as they are discovered, and install it regularly.

AyrMesh devices have firmware that is updated over the network. We issue several updates per year, and you needn’t do a thing – they happen automatically.

If you have any questions, of course, just let us know – support@ayrstone.com.

 

The state of the art in soil sensors – Farmx

As mentioned in an earlier post, we have been working with the RoyseLaw AgTech Incubator. One of the benefits of the program has been the ability to work with some of the most innovative companies coming up. This is one of those companies.

FarmX, based in Tulare, CA, has launched its FarmMap solution in CA and is introducing FarmMap with special pricing for existing Ayrstone customers. To take advantage of this offer, please complete this form.

FarmMap is a low-cost smart farm automation tool that uses scientific grade instrumentation to give you access to all the information you need about your farm in simple, secure, all-in-one tool. The FarmMap’s cloud platform gives you constant, secure access to your data, recommendations and field health.

FarmMap’s system of soil probes gathers information across your acreage with 1 probe for every 10 acres and connects your farm to the cloud. Each FarmMap sensor probes captures key environmental, soil and plant health data in real-time.

FarmMap uses state-of-the-art machine learning techniques to uncover opportunities to improve productivity and reduce the cost of inputs, such as water and fertilizer. FarmMap gives you the confidence to make accurate decisions quickly, accurately, saves you time and gets rid of guesswork.

This is another example of the kind of technology that is available at very low cost when you outfit your farm with an AyrMesh network – each field can be outfitted with a FarmMap gateway device to communicate with their soil sensors, and you can connect the gateways to AyrMesh components (Hubs, Receivers, or Bridge radios, depending on your network) to connect them to your network.

Click below for more information about FarmX and FarmMap:

Ayrstone in the RoyseLaw AgTech Incubator

For the last few months, we have been fortunate enough to be part of the RoyseLaw AgTech Incubator. Our involvement in the incubator many benefits, including access to top people in California business and agriculture as well as the Silicon Valley venture capital community. We expect our involvement to result in many benefits to us as we move forward.

The most important reason we wanted to be part of the incubator, however, was to associate ourselves with some of the most interesting up-and-coming companies in agricultural technology. I would encourage you to check them out to see where “Ag-Tech” is going today.

One other benefit of the incubator is that we are part of the second annual Silicon Valley AgTech Conference on May 11. If you are interested in the future of agricultural technology and you’re going to be in Northern California, please attend the conference. There will be AgTech companies (like Ayrstone), investors, growers, and others with an interest in agriculture and technology.

Long Range WiFi: two approaches

We didn’t invent the idea of putting WiFi on farms and ranches, although I think we’ve done a lot to popularize it. And it’s not really WiFi that’s important, it’s just having a farmwide network that you can connect to and move data with.

When we started, we realized there were two ways we could build out the farm wireless network, and that we’d need to support both ways. However, we had to start somewhere, and we knew that the best short-term “proof of concept” was using the mesh network approach: a bunch of high-power WiFi Access Points that are connected to the Internet and talk to each other using a meshing protocol. That’s what gave rise to the AyrMesh Hub.

Because the Hubs can be up to 2.5 miles apart, it allows you to extend your network out quite a ways from your home place, and that’s useful for a lot of people. It also allows you to “get in the game” for a minimal investment – a few hundred bucks for a Hub and a little time putting it up high and out in the clear gets you WiFi across your farmyard and out into your fields. Then you can extend the network from there with additional Hubs.

However, sometimes you just want to connect someplace into your network, and you don’t need to have WiFi. For those cases, a different approach is optimal: point-to-point microwave links, also known as “bridges.”

A bridge can use WiFi or a WiFi-like signal to connect two locations and pass data between them. Typically they are “Layer 2” devices, meaning that they work just like a long, wireless Ethernet cable. You plug one radio into your network (typically your router) and then plug the other radio into whatever you want to put on your network (a computer, IP camera, WiFi access point, etc.), and everything works just like it was plugged into your router.

The AyrMesh Bridge uses microwave radios that use the 5.8 GHz. band (used for 802.11 WiFi “a,” “dual-band n,” and “ac”), but they use a special “narrow-band” microwave signal that increases the range, reduces the effects of interference, and makes the signal invisible to WiFi “sniffers.”

Of course, if you are just connecting some distant device or devices into your network, you can also use an AyrMesh Hub and an AyrMesh Receiver. It will actually work the same way; the differences are:

  • The AyrMesh Bridge is just a wireless Ethernet cable that doesn’t provide a wireless signal usable by anything else. The AyrMesh Hub provides WiFi that other devices can use.
  • The AyrMesh Bridge is a “1-to-1” system, but you can have several Receivers talking to one Hub.
  • The Receiver can be up to 2 miles from the Hub, but the Bridge radios can be up to 5 miles apart.

It’s not necessarily an “either/or” thing. Several AyrMesh users are using the AyrMesh Bridge to reposition their Gateway Hub to the top of large structures (e.g. grain legs) to give the Hubs maximum range. A couple of people are using their Hubs for WiFi but providing connectivity to other buildings using Bridges (with the Hub and the Bridge radio mounted next to each other on top of the house or office). And you can use a Bridge connected to a Remote Hub to connect a device several miles away from the Hub.

There are a lot of folks out there selling wireless bridges – we think the AyrMesh Bridge is the best for one important reason: it’s the easiest to set up and use. No configuration is needed: you just connect both radios in the Bridge to your router. They download your configuration from AyrMesh.com and then all you have to do is mount them outside pointing at each other.

Introducing the AyrMesh Bridge

Today we are pleased to announce the availability of the AyrMesh Bridge.

The AyrMesh Bridge is a simple, wireless, point-to-point bridge. It serves a single purpose – to connect a distant device to your local network – a 5-mile long wireless Ethernet cable.

Wireless bridges have been around for a long time, and we had initially rejected the idea of adding a wireless bridge to the AyrMesh product line. If you have the Hubs and Receivers, why do you need a Bridge?

Testing in California

However, several customers have come to us in the last year with the same problem: their Gateway Hubs are on top of their homes or offices, but they would be better placed on top of a grain leg or another building with a better “view” of the surrounding fields.

In these cases, it would be possible to use one Hub near their routers to feed a Hub on the high location, but that would limit the ultimate range of the AyrMesh network (because we recommend only using up to three “hops” across Hubs).

The truth is that there are a lot of places the AyrMesh Bridge can be used:

  • Connecting an isolated outbuilding to your network (if you don’t want or need WiFi – if you want or need outdoor WiFi, of course, the Hub and a Receiver is a better solution)
  • Connecting a non-WiFi device that is more than 2 miles from a Hub or Receiver
  • Any other situation where you think “I wish I had an Ethernet cable that long.”

We are using a special radio signal for the AyrMesh Bridge to maximize the range. It is a narrow-band 5 GHz. signal, which is hidden and fully encrypted. Although it uses the 5 GHz WiFi band, it does not register with any WiFi equipment because it is a narrow-band signal. This minimizes interference with 5 GHz. WiFi  signals, but does not completely eliminate it. If you are using 5 GHz WiFi equipment (802.11a, ac, or dual-band n), you’ll want to use different channels for your AyrMesh Bridge than your WiFi equipment.

Contents of the AyrMesh Bridge package

The AyrMesh Bridge comes complete with two radios (one for each end of the Bridge), power supplies, and 10′ Ethernet cables. Like all Ayrstone AyrMesh products, each radio is initialized by plugging it into your router until it shows up on AyrMesh.com, then it can be installed.

Like all AyrMesh devices, the Bridge radios are controlled by AyrMesh.com, as shown here. There is only one control for the Bridge – the 5 GHz. channel can be set to 149 (the default), 153, 157 (as shown here), 161, or 165. Note that these are distinct channels; unlike the 2.4 GHz. WiFi channels they do not overlap.

The AyrMesh Bridge is the simplest way to connect a device to your network at a considerable distance. Please contact us if you have any questions or comments about it.

 

 

Getting the most out of your router – part 3

Once you have your router set up properly, your devices on-line, and ports forwarded to those devices, there’s one more small problem: being able to reach your devices over the Internet. There are two problems: first, Internet Service Providers (ISPs) usually provide dynamic IP addresses, so your “home address” may change from time to time; second, IP addresses are hard to remember.

The solution is what is called “DDNS” – Dynamic Domain Name Service. Domain Name Service (DNS) is simply the service that translates a domain name (ayrstone.com) into an IP address (162.159.242.105) so you can access it. DDNS is a service that continually and automatically updates the IP address so that you can always reach your home network using a simple, easy-to-remember domain name.

There are two parts to DDNS: first, it involves a service, for which there is usually (but not always) an annual fee, and an “updater” that notifies the service when your IP address changes. Dyndns.com is the leader in this area; they used to offer a single DDNS account for free, but they have since gone to charging $25 a year. For this they offer a very good service with email support if you need it.

Using Dyndns.com is very easy: you typically sign up with a username (e.g. “ayrstone”) and you can select an extension on one of their “house” domains (e.g. ayrstone.dyndns.org – you can actually select up to 30 – or you can use a domain name you actually own). You then need to set up an “updater:”

  1. Many brands of routers have an updater “built in” for dyndns.com, or
  2. You can download a small program from http://dyn.com/support/clients/ that you run on a computer that is ONLY in use on your home network (it won’t help if it updates your domain name to point to Starbucks…) so it can automatically tell when your IP address changes and “tell” dyndns.com.

One of the advantages of using Dyndns.com is that many brands of router are pre-configured for them; all you have to do is fill in your credentials and go. Dyndns.com also has good, downloadable background programs to run on your home or office computer to update the IP address – this is actually how I use the service. My router doesn’t have a built-in Dyndns.com updater, but my office computer is always on here in the lab, so that’s the easiest way to keep Dyndns.com up-to-date on the lab’s IP address..

There are still a number of organizations that offer free DDNS, and here’s a nice article on Lifehacker that talks about them. The free DDNS services are generally not as convenient: many routers don’t even have a “generic” DDNS setup, but, if yours does, that’s what you’ll use if you want the router to update your IP address. If not, most of them have instructions how to set up a script on your home PC to update the address – entirely doable, but not as easy as just downloading an application. Also, most of the free services don’t have any technical support – they’ll typically have “FAQs” on their site, but you’re on your own. I use one of the free services at home, and it works just as well as Dyndns.com, but it was a bit tricky to set up.

Once you get it set up, accessing your home or office network is simple: just use the domain name you selected. For instance, here in the lab I have my desktop computer accessible via VNC accessible on port 7999, two IP cameras (ports 9005 and 9006), and a weather station on port 8000 (as well as my router on port 80). If the lab’s DDNS domain is ayrstone.dyndns.org (it’s not really, of course… even though everything here has a good password, I’m not inviting people to try to hack them), then I can VNC into my computer at ayrstone.dyndns.org:7999, view my IP cameras at http://ayrstone.dyndns.org:9005 and 9006 (I actually have IP Cam Viewer on my phone set up for those ports already), view my weather station at http://ayrstone.dyndns.org:8000, and re-configure my router at http://ayrstone.dyndns.org (port 80 is the default for http connections).

If your goal is to automate information-gathering and enable remote control for machinery on your farm, you need to have access to your farm’s network from wherever you are. DDNS is a way to make that much easier.

Bringing WiFi into your Cab – the new AyrMesh Cab Hub

There’s a lot of data being collected by monitors in the cabs of tractors, sprayers, and combines, and getting that data someplace it can be used can be critical to your operation. Today we are introducing a way to connect your tractors, sprayers, combines, and trucks to your AyrMesh Network: the AyrMesh Cab Hub.

The AyrMesh Cab Hub is a combination of three things: our trusty, patent-pending AyrMesh Hub2n, a cable that allows the Hub to be powered from a normal 12 volt utility “cigarette lighter” plug, and an external magnetic-mount antenna to get the Hub’s antenna outside and up in the clear.

When it is all set up, the AyrMesh Hub2n rides inside the cab of your vehicle, protected from shock and vibration, but mounted where you can see the “signal lights” if you need to. The cable is plugged into one of the 12v utility outlets, and the antenna is put on a ferrous surface on top of the cab. The Hub connects to the other Hubs in your AyrMesh network, giving you WiFi connectivity in your cab.

The most valuable data on the farm, and some of the hardest data to move to where it can be effectively used, are the data trapped in the monitors on your machines: as-seeded, as-applied, and harvest data. Getting that data out has been laborious (moving Compact Flash cards) or expensive and uncertain (using cellular links), so we’re trying to make it easier with the AyrMesh Cab Hub.

By using the AyrMesh Cab Hub, you’ll have a strong WiFi signal in your Cab whenever you’re in range of one of your other AyrMesh Hubs – up to 2.5 miles away. This means you can use your smartphone, tablet, or laptop from the cab of your tractor, sprayer, combine, or truck. It also makes it easy to transfer data from your WiFi-equipped in-cab monitors, like an AgLeader monitor with their AgFinity adapter, using your AyrMesh network. If your equipment doesn’t currently have WiFi, talk to your dealer about it – vendors are rolling out new products all the time.

If your monitor supports WiFi data transfer, you can use your AyrMesh network to transfer data from your monitor without having to rely on expensive and unreliable cellular links.

Please let us know what you think of this new product from Ayrstone Productivity!