Tag Archives: farm wifi

A new take on the “WiFi vs. Cellular” question

Guy on the phone on a haybaleEvery so often I run into someone who asks, “Why would I want a WiFi network across my farm? I have a cellphone that will access the Internet anywhere I go…”

It’s kind of a funny argument, for a few reasons:

  1. If you have good cellular data access across your entire farm, you’re in the minority – most people in the rural U.S. and Canada have no or only very slow Internet access via the cellular network on some, most, or all of their properties.
  2. Even if you have Internet access via cellular, it’s almost always slower than WiFi. It’s been my experience that people appreciate WiFi a lot more after they get a smartphone.
  3. Having a local-area network (LAN) enables you to do more than just access the Internet – it allows you to use IP cameras, weather stations, soil sensors, and other devices to keep track of what’s happening on the farm, and even use network-connected relays, grain dryers, irrigation, lighting, and HVAC systems from anywhere on the farm

The cellular service providers (AT&T, Verizon, etc.) originally only used the cellular networks for both voice and data – but the data connections were at “modem-speed” – kilobits per second. Then smartphones (led by the Blackberry and Nokia phones) started to be capable of much more data usage – email and even some web browsing – and phone manufacturers started including WiFi connectivity. Later on, cellular providers offered faster cellular data options (“3G” and “4G”), but modern smartphones still use the cellular network for voice, and the voice network is still separate from the data network. The upshot is that, in many rural areas, you can make or receive voice calls and get or send text messages, but you may not be able to load a web page or send an email unless your have a nearby WiFi network.

A new article in Businessweek points out some new providers are actually turning that model on its head, introducing phones that use the WiFi network by default for voice and data, and only access the cellular network if there is no known WiFi network in range.

Now, I have a cellphone with a data plan, and I pay over $120 per month even though my phone is on WiFi about 90{8fd1ffa65f67a2e931916b3c1288d51eed07dc30586a565c92d055673de7c64e} of the time. If I weren’t traveling all over the place on Ayrstone business, I’d be very tempted to get one of these Republic Wireless or Scratch Wireless phones and save about $80-100 of that bill per month.

For people who have a Wireless Farm Networking system to provide farmwide WiFi, these new phone plans may be very tempting.

What do YOU want for Christmas???

We were curious about that question ourselves, so we commissioned a survey of growers across the corn belt.

We got over 100 responses to our call from Minnesota to Tennessee and Ohio to Nebraska, all across the Midwest.

All things wireless top the list of technology-related gifts that farmers want for Christmas this year. More than 40 percent of those surveyed are putting wireless remote cameras and wireless remote weather station / soil sensors on their lists. And nearly 50 percent would like a wireless farm network that extends up to 7.5 miles from their homes.

Farmers are also frustrated by the lack of connectivity on their farms. In fact, nearly 80 percent of those surveyed said they are frustrated that their wireless network does not extend to sheds, grain bins or nearby fields.

Other technology-related gifts that farmers say they want according to the survey include wireless remote grain monitoring, an iPad or other tablet, a new router, and remote thermal imaging.

If you’re worried that Santa might not deliver this year, you might want to take care of yourself: go to ayrstone.com and start a new AyrMesh Network for yourself (or expand your existing network) so you have the wireless access you need!

Why AyrMesh.com?

This is one of the questions we get in Ayrstone support from time to time: why do I HAVE to use AyrMesh.com? Why isn’t there just a setup menu on the device?

My answer is simple: if you’re using a single Hub, then it doesn’t much matter:  you have to set the configuration on the device or you have to set the configuration on AyrMesh.com. About the same amount of effort.

But, if you’re using more than one AyrMesh device – Hubs or Receivers – on your network, using AyrMesh.com saves you time, because all your devices automatically configure themselves from AyrMesh.com. Furthermore, because they check into AyrMesh.com every few minutes, you can always check there to make sure your AyrMesh devices are working properly.

Our entire goal in creating the AyrMesh System was to make it so easy that anyone could set it up and use it, and you’d spend as little time as possible fiddling with your network and as much time as possible enjoying its benefits. AyrMesh.com is an important part of that value

The hard part of wireless networking: the wires.

It’s actually an old joke in the wireless networking world: what’s the worst part of wireless networking? The wires!

(OK, it’s an old dumb joke…)

While having WiFi all over the farm is incredibly useful, the only way to make it happen is using Ethernet cables. While Ethernet cables are very simple devices, there are an amazing number of variations and types of Ethernet cables, an choosing the wrong ones (or using them poorly) can cost you time and money.

What is an Ethernet cable?

Courtesy of WikiMedia

Ethernet cables all have some common characteristics: they contain 4 pairs of wires, with each pair twisted around each other (so they are called “twisted-pair” cables). They have an outer sheath to protect the wires inside and they use RJ-45 connectors to connect to networking devices.

The 4 pairs of wires inside the sheath are usually colored green, brown, blue, and orange – one solid and one striped for each color. The wires are usually 100{8fd1ffa65f67a2e931916b3c1288d51eed07dc30586a565c92d055673de7c64e} copper, but some cheaper cables are made of alloys. Alloy cable works OK for short lengths, but should not be used for cables longer than 25 feet. There is sometimes an uninsulated wire running down the middle of the cable called a “drain wire” – this is meant to provide a common ground for the equipment the cable is connected to.

The wires are usually about 24 gauge (AWG), but some cheaper cables use 26 gauge wire, and some more expensive cables use 22 gauge wire. Obviously, the bigger the wire the better, as long as it’s pure copper, but bigger wire also makes heavier cables. It makes a difference if you’re hauling it up a ladder, believe me.

Kinds of Ethernet Cables

Under the sheath, some cables have a shield made of metallic braid or foil. This shield keeps outside noise from penetrating the cable and disrupting the signal on the wires. Unshielded cables are designated as “UTP” (Unshielded Twisted Pair), while shielded cables are designated “STP” (Shielded Twisted Pair). Our experience shows that any cable over 25 feet should be shielded to prevent corruption of the data on the wires and maintain the speed of the data.

You will see, shopping for Ethernet cables, that there are several “Categories” of cable – Cat 5, Cat 5e, and Cat 6 are the common ones available now. The differences are in the speed rating of the cables – Cat 5 can pass data at 10 Mbps or 100 Mbps, Cat 5e can pass data at 10, 100, or 1000 Mbps, and Cat 6 can go up to 10 Gbps. Any of these will work well with AyrMesh equipment – we usually buy Cat5e cables because they are less expensive and widely available. The main physical differences in the cables is how tightly the wire pairs are twisted together.

Finally, the sheath itself can differ quite widely. The normal sheath is usually a form of polyolefin, which does not burn easily. “Plenum-rated” and “Riser-rated” sheaths are coated with a low-smoke PVC, which makes them even more flameproof and reduces the toxicity of the smoke if they do catch on fire. “Direct burial” cables generally have a very thick and heavy sheath, and they may contain a gel that prevents a nick or cut in the cable from admitting water into the cable. Obviously, if water gets into the cable, the wires can corrode and the cable will go bad, but direct burial cables are usually very stiff and very heavy, making them extremely difficult to work with.

Whichever cable you choose, it is imperative that you handle it correctly. Because the cable consists of a bunch of small wires, it is really no stronger than any of those wires. It’s very easy to get a kink in a cable when you’re pulling it through a hole, for instance, and break one of the wires. When that happens, the cable is generally useless.

General Guidelines for Ethernet cables used with AyrMesh products

  • Make sure the cables are all-copper and shielded (STP) if they’re 25 feet or longer.
  • Try to get 24 or 22 AWG wires in the cable.
  • Get plenum-rated or riser-rated cables for use indoors, but don’t use direct burial cables unless you’re going to bury them – they’re too hard to manage.
  • ALWAYS leave a “drip loop” when you’re bringing a cable run from outside to inside a building so water doesn’t run down the cable and ruin equipment!
  • Be VERY careful pulling cables – they are more fragile than they seem!

AyrMesh for Precision Ag – collecting precision data from cab monitors

Lots of data here…

Both of the founders of Ayrstone Productivity have backgrounds in precision agriculture, and one of the motivations we had in starting Ayrstone was to help growers access and use the data generated by all those in-cab monitors by giving them a way to capture all that data wirelessly. The information on those computers is a potential goldmine if you can use it quickly and easily to make smarter decisions about your operation.

When we were doing research about data collection, however, we learned that the vast majority of growers just left the CF cards in the cab monitors all season, because it was just too much bother to pull out the card, bring it in, out it on the computer, dump the data, store it (so you can find it again), and then remember to take it back out and put it back in the monitor before you go out to work again. Some vendors were starting to put cellular modems into their cab computers, but they are expensive in the first place and carry a pretty hefty monthly service fee with them. Furthermore, there are pretty substantial chunks of rural America without good cellular data service (which is usually separate from the voice service signal).

We proposed that a mesh WiFi network (like the AyrMesh network) could be a much more effective way to collect that data so it can be used for decision support. It can be extended wherever it needs to go for data collection, it doesn’t carry a monthly charge, and a WiFi adapter, even a high-power outdoor one, is much less expensive than a cellular modem.

Adam Gittins of HTSag has an interesting and thought-provoking blog post about collecting harvest data off his AgLeader console with the new AgFinity WiFi adapter. He is even able to see his harvest results when he’s not on the combine!

Thank you to Adam Gittins for this image

New Ayrstone Product: the AyrMesh Receiver

Today we’re announcing a new product in the Ayrstone AyrMesh line: the AyrMesh Receiver.

The AyrMesh Receiver is actually, of course, more than a receiver – it transmits and receives data – but it is designed as a simple, low-cost way to put one or more “wired” (Ethernet) devices onto an AyrMesh network. It is very similar to our AyrMesh Hub, but with a couple of important differences:

  1. The AyrMesh Receiver connects to the Hub’s WiFi signal, not the wireless mesh signal.
  2. The AyrMesh Receiver does not create its own WiFi access point – it is a client device only
  3. The AyrMesh Receiver uses a directional antenna for maximum range – it can be positioned up to 2 miles away from an AyrMesh Hub (optimal conditions).

Typical uses for the AyrMesh Receiver include:

  1. Using high-end IP cameras or other network devices that do not have WiFi
  2. Bringing the AyrMesh network inside of metal buildings – an AyrMesh Receiver can be placed on the outside of the building and devices inside can be connected to the LAN port of the receiver. You can even put a WiFi access point inside the building so you have WiFi indoors as well as outdoors.
  3. Connecting devices like network-enabled weather stations in more distant fields – since the AyrMesh Receiver can be up to 2 miles from your furthest Hub, you can now include areas in your network that were previously unreachable.

The AyrMesh Receiver is available now from Ayrstone – please see our website for details.

Wireless Farm Networking: what and why

A few years ago, we identified a real need in the agricultural market for more robust, internet-connected farm networks. This was driven by our work in precision agriculture; what we saw was that there was a glut of usable data that could be helping growers make better (and more profitable) decisions, but that data was mostly trapped on personal computers and in-cab monitors.

As we looked at this situation, we realized there were two equally important needs which were interrelated: the first is a comprehensive platform for turning all this raw data into actionable information, and the second was a facility for collecting the data and putting it to use. But there’s a “chicken and egg” problem here: if you don’t have the data, you can’t turn it into information, but there’s no good way to collect and use the data currently.

The AyrMesh Hub

So we decided to tackle the second problem: create an “Enterprise Network” for farmers and ranchers, so they could collect data from their farm operations effortlessly and use that data to make more informed decisions. We realized, of course, that a typical network was not going to work for the farm: everything is very far apart, so laying cable (or even fiber) is generally not a workable solution. Besides, the network should ideally encompass the tractors, sprayers, and harvesters out working in the fields, so wireless is the only option. This was the impetus that gave birth to the original AyrMesh Hub.

The idea was fairly simple: take some of the ideas used in the “Roofnet” project at M.I.T. and adapt them to building a low-cost wireless mesh network for farm use. The key requirements were:

  1. Use WiFi – other, proprietary mesh networks had been tried, but they require a wireless “client” device for anything you want to put on the network. Lots of things have WiFi today – it’s an easy, familiar, open technology
  2. Design the system for a farm – provide good bandwidth to relatively few “clients” spread over a very wide area. Most WiFi devices in the market today are designed for exactly the opposite: a metropolitan mesh network, where you have many people in a very small area and high bandwidth demands.

What we have seen is that, like all technologies, there is an adoption curve. The first step is the desire to use one’s Internet connection beyond the confines of the house. Especially with the advent of smartphones and tablet computers like the iPad, the ability to have instant information and communications everywhere you go on the farm can be a reality, even if cellular data is not available everywhere on your farm.

A WiFi Camera

The second step is connecting sensors to the network to “keep an eye out” on your farm. The most popular and demanded sensor, of course, is the IP camera. The ability to bring up a view of an area of your farm, whether to see the settings on the grain dryer, keep an eye on livestock (especially in the middle of the night), or as the basis for a security system, cameras seem to have a place on every farm. But, moving forward, putting network-connected environmental sensors in livestock buildings and distant fields can bring terrific pro

A Weather Station at the edge of a field

ductivity gains. Knowing the temperature and humidity in your livestock barns can help optimize your HVAC usage, while knowing the wind and rainfall in a distant field can save a trip if it’s too windy or too wet to work.

Lots of data here…

In addition, some of the precision agriculture vendors are starting to put WiFi into their in-cab monitors, so you can access the data on those monitors over the network instead of having to move cards or USB sticks around. Being able to access your “as applied” and harvest data allows you (or your agronomist) to much more easily determine your variable rate applications as you go through the season, potentially cutting your costs and maximizing your yield.

Network-controlled relay, courtesy controlbyweb.com

The third step is farm control: being able to actually get things done on the farm over the network. Grain dryers, pumps, irrigation systems, HVAC systems, and other equipment could be controlled over the network. This means that you can potentially control your grain dryer from the bedroom, or even while you’re running errands in town, since your network is connected to the Internet.

What we learned in the 1990s and 2000s when networks were becoming ubiquitous in the corporate world is that the presence of the network creates opportunities to improve the business in unexpected ways. We don’t pretend to know what all the uses are for a wireless farm network, but we’re very excited to see what they are. We’re here at the very beginning of farm networking, and the future is limitless.