Tag Archives: networking

The “Third Wave” of AgTech

paydirtWe wanted to quickly share an article published recently that impressed us quite a bit.

This article in DTN/Progressive Farmer talks about how information technology is making a difference in farming and how that is likely to accelerate in the coming years.

There are a lot of unknowns in the “AgTech” field – most importantly, which vendors and technologies are going to be genuinely important and which will be forgotten. However, one thing is clear: the technology of agriculture, and particularly of agricultural data, is here to stay. And, where you have data, you HAVE to have a way to move it. And, finally, the way to move data is using networks.

So we are encouraged by this article (and others we have seen) that predict increasing importance for data on the farm – it just makes the AyrMesh network that much more valuable for our customers.

The Internet of Things (IoT) on the farm – part 1

I read a LOT about the “Internet of Things” (abbreviated IoT) is in the news lately; you probably have see it too, and there is a lot of excitement around it. And I would argue there’s good reason for that – it is going to change everything, perhaps more fundamentally than cellphones and, later, smartphones. But it is important to understand what the IoT is, what it is not, and how it will affect life on the farm.

Courtesy of Nest

The IoT is not a single thing or even a particular class of things; it refers to a new generation of devices that are connected to the Internet and perform some function, with little or no human interaction. There are already a LOT of good examples, from the Nest Thermostat to kid’s Arduino toys, from devices that can be handy almost everywhere like a network-connected lightswitch, to highly specialized devices like grain dryer controllers or irrigation controllers. I would argue that little of this stuff is new; the things we are seeing being touted as “IoT” devices are really the same as things we already have, just made smaller, smarter, and less expensive. Frequently a LOT smarter and a lot less expensive, which is important.

Belkin WeMo WiFi Outlet

But the profusion of little, inexpensive, smart things all over the place is having effects we can’t fully understand or appreciate yet. The one thing we can predict with some certainty is that the people who understand these devices and put them to use intelligently will see tremendous gains, just as those who started using computers intelligently saw huge benefits. The question, of course, is, “How do I use these devices?”

Technical knowledge is much less important at this phase than imagination – in all honesty, the most technically competent people miss a lot because they are too invested in how things ARE, so they cannot understand how things COULD BE. So I pose this question to you: what on the farm could be made better (faster, cheaper, more profitable, or more enjoyable) by little computers with accurate little sensors (for light, heat, moisture, position, motion, and lots of other things) and robust built-in data communications infrastructure (WiFi)? What could you monitor? What could you control remotely (or even automatically), especially using the data you are getting from monitoring?

We’ll explore this more in future blog posts, but I would like to hear what you have to say, as well.

You can find Part 2 here, as well as a good post about sensor networks.

Saving money with AyrMesh

There are all kinds of new technologies and products available for farming – these new “AgTech” products hold real promise to change the practice and the economics of farming. But you have to evaluate them realistically to understand how they will help you improve your profit: increase revenue or save costs.

AyrMesh was designed specifically to help save costs on the farm, so it provides increased profits no matter what happens to yields and crop prices. There are several ways in which AyrMesh helps you reduce costs, directly or indirectly:

  1. Reduce the cost to simply move data – your cellphone (and maybe your tablet and/or laptop) has a cellular radio for data, and you pay a premium for using more than a minimal amount of data per month. By using the AyrMesh network, however, you can be disconnected from the cellular data network and save money you would have to send to the cellular companies.
  2. Employ new technologies that can save money – because AyrMesh is a standard, Internet-Protocol (IP) network, you can avail yourself of off-the-shelf products that just connect to your network. Examples include things like networked weather stations and soil sensor systems, but also grain dryers and irrigation systems. As security becomes an increasing concern on the farm, having an AyrMesh network allows you to quickly and easily place IP cameras so you can keep an eye on distant parts of the farm
  3. Be prepared for the future – new, time-saving and money-saving products are coming up fast, and you can be ready to put them to work. New autonomous vehicles, remote sensors, and remotely-operated machinery will be able to magnify the effort you put in on the farm, just like tractors and combines did in the late 1800s, increasing the profitability of farms.

But be careful: a lot of products being sold come with a “small monthly fee” to pay for a cellular modem to move data from the device to the company’s cloud servers. It’s a business model that works and it makes it easy to install new products, because the vendor doesn’t have to worry about setting up a network. However, as you adopt more and more of those products, the number of small monthly fees is going to add up fast, and none of them will work in fields without cellular connectivity.

Look, electronics and data aren’t going to grow the crops. But the information they can provide you can help you make better decisions, both season to season and day to day, to save money and increase yields. Smart investment in AgTech begins with thinking about the data – what you can use, how you will use it, and, most importantly, how you will get it from where it is generated to where it is useful. We are here to help with that last bit.

AyrMesh Field Hub – Solar powered to extend the network

We have been asked multiple times how to extend the AyrMesh network beyond the availability of plug-in power. The key, of course, is solar panels and/or wind turbines, along with batteries to hold the power when the sun isn’t shining or the wind isn’t blowing.

Tycon Power has solved this problem for us by developing an integrated system just for the AyrMesh products: Hub, Receiver, or Bridge radio. The product to use is their RPPL-1212-36-30 unit. You can buy it directly from Tycon at their store site. This system with the 30 Watt solar panel will work in most of the country that receives an average of 3.5 hours per day or more – the red and dark orange bands on the standard insolation map. For areas in the light orange or yellow areas on that map, you will need to add a second 30W solar panel (with mounting bracket) or a wind turbine to keep the batteries charged.

Tycon also makes larger systems for multiple devices. The RPST-1212-100-70 system will provide power for two or three devices – for instance, a Bridge radio and a Hub or two “back to back” bridge radios.

As with the smaller system, if you get less than an average of 3.5 hours of sunlight per day, you’ll need to augment the power generation of that system with an extra 70W solar panel (and mounting bracket) or the wind turbine.

Higher is better

What does it take to set this up? Two things: very rudimentary wiring skills to connect the batteries and the solar panel with the solar controller, and the ability to set up a strong mast or tower. In our tests, we used a 7′ tall free-standing pole, but, for practical use, you’ll want a much taller pole or tower, embedded into the soil with concrete. You need, of course, to get the radios up as high as practical, but at least 25 feet above any obstacles for maximum range. This may require the use of a pole with guy lines or even a tower.

The system provides Power over Ethernet (PoE) for the radios, just like the power supplies that come with the AyrMesh products. The mechanical considerations (attaching the solar panel and battery pack to the pole or tower) is extremely simple, using either U-bolts or hose clamps.  Using this to extend your network out into your fields will enable you to use the AyrMesh Cab Hub to automatically move data off your in-cab computers and have WiFi coverage in your cab wherever you are on the farm.

If you have any questions about this, of course, please feel free to comment on this post or get in touch with us at support@ayrstone.com.

Long Range WiFi: two approaches

We didn’t invent the idea of putting WiFi on farms and ranches, although I think we’ve done a lot to popularize it. And it’s not really WiFi that’s important, it’s just having a farmwide network that you can connect to and move data with.

When we started, we realized there were two ways we could build out the farm wireless network, and that we’d need to support both ways. However, we had to start somewhere, and we knew that the best short-term “proof of concept” was using the mesh network approach: a bunch of high-power WiFi Access Points that are connected to the Internet and talk to each other using a meshing protocol. That’s what gave rise to the AyrMesh Hub.

Because the Hubs can be up to 2.5 miles apart, it allows you to extend your network out quite a ways from your home place, and that’s useful for a lot of people. It also allows you to “get in the game” for a minimal investment – a few hundred bucks for a Hub and a little time putting it up high and out in the clear gets you WiFi across your farmyard and out into your fields. Then you can extend the network from there with additional Hubs.

However, sometimes you just want to connect someplace into your network, and you don’t need to have WiFi. For those cases, a different approach is optimal: point-to-point microwave links, also known as “bridges.”

A bridge can use WiFi or a WiFi-like signal to connect two locations and pass data between them. Typically they are “Layer 2” devices, meaning that they work just like a long, wireless Ethernet cable. You plug one radio into your network (typically your router) and then plug the other radio into whatever you want to put on your network (a computer, IP camera, WiFi access point, etc.), and everything works just like it was plugged into your router.

The AyrMesh Bridge uses microwave radios that use the 5.8 GHz. band (used for 802.11 WiFi “a,” “dual-band n,” and “ac”), but they use a special “narrow-band” microwave signal that increases the range, reduces the effects of interference, and makes the signal invisible to WiFi “sniffers.”

Of course, if you are just connecting some distant device or devices into your network, you can also use an AyrMesh Hub and an AyrMesh Receiver. It will actually work the same way; the differences are:

  • The AyrMesh Bridge is just a wireless Ethernet cable that doesn’t provide a wireless signal usable by anything else. The AyrMesh Hub provides WiFi that other devices can use.
  • The AyrMesh Bridge is a “1-to-1” system, but you can have several Receivers talking to one Hub.
  • The Receiver can be up to 2 miles from the Hub, but the Bridge radios can be up to 5 miles apart.

It’s not necessarily an “either/or” thing. Several AyrMesh users are using the AyrMesh Bridge to reposition their Gateway Hub to the top of large structures (e.g. grain legs) to give the Hubs maximum range. A couple of people are using their Hubs for WiFi but providing connectivity to other buildings using Bridges (with the Hub and the Bridge radio mounted next to each other on top of the house or office). And you can use a Bridge connected to a Remote Hub to connect a device several miles away from the Hub.

There are a lot of folks out there selling wireless bridges – we think the AyrMesh Bridge is the best for one important reason: it’s the easiest to set up and use. No configuration is needed: you just connect both radios in the Bridge to your router. They download your configuration from AyrMesh.com and then all you have to do is mount them outside pointing at each other.

Introducing the AyrMesh Bridge

Today we are pleased to announce the availability of the AyrMesh Bridge.

The AyrMesh Bridge is a simple, wireless, point-to-point bridge. It serves a single purpose – to connect a distant device to your local network – a 5-mile long wireless Ethernet cable.

Wireless bridges have been around for a long time, and we had initially rejected the idea of adding a wireless bridge to the AyrMesh product line. If you have the Hubs and Receivers, why do you need a Bridge?

Testing in California

However, several customers have come to us in the last year with the same problem: their Gateway Hubs are on top of their homes or offices, but they would be better placed on top of a grain leg or another building with a better “view” of the surrounding fields.

In these cases, it would be possible to use one Hub near their routers to feed a Hub on the high location, but that would limit the ultimate range of the AyrMesh network (because we recommend only using up to three “hops” across Hubs).

The truth is that there are a lot of places the AyrMesh Bridge can be used:

  • Connecting an isolated outbuilding to your network (if you don’t want or need WiFi – if you want or need outdoor WiFi, of course, the Hub and a Receiver is a better solution)
  • Connecting a non-WiFi device that is more than 2 miles from a Hub or Receiver
  • Any other situation where you think “I wish I had an Ethernet cable that long.”

We are using a special radio signal for the AyrMesh Bridge to maximize the range. It is a narrow-band 5 GHz. signal, which is hidden and fully encrypted. Although it uses the 5 GHz WiFi band, it does not register with any WiFi equipment because it is a narrow-band signal. This minimizes interference with 5 GHz. WiFi  signals, but does not completely eliminate it. If you are using 5 GHz WiFi equipment (802.11a, ac, or dual-band n), you’ll want to use different channels for your AyrMesh Bridge than your WiFi equipment.

Contents of the AyrMesh Bridge package

The AyrMesh Bridge comes complete with two radios (one for each end of the Bridge), power supplies, and 10′ Ethernet cables. Like all Ayrstone AyrMesh products, each radio is initialized by plugging it into your router until it shows up on AyrMesh.com, then it can be installed.

Like all AyrMesh devices, the Bridge radios are controlled by AyrMesh.com, as shown here. There is only one control for the Bridge – the 5 GHz. channel can be set to 149 (the default), 153, 157 (as shown here), 161, or 165. Note that these are distinct channels; unlike the 2.4 GHz. WiFi channels they do not overlap.

The AyrMesh Bridge is the simplest way to connect a device to your network at a considerable distance. Please contact us if you have any questions or comments about it.

 

 

Getting the most out of your router – part 2

The ASUS RT-N66U – a modern, high-end home wireless router

In the last article in this series, I discussed what a home router is and a little bit about how it works, as well as providing guidance on how to set up the DHCP server.

IP addresses on your LAN are assigned one of two ways: either by the router’s DHCP server, which provides them out of the DHCP address pool (which I suggested should be 192.168.1.50 to 192.168.1.254) or by statically assigning them yourself (which I suggested should be out of the remaining 192.168.1.2 to 192.168.1.49 addresses). Assigning static addresses is very seldom necessary on modern routers, however, because most modern routers have a feature called “DHCP Reservations.” This allows you to specify the MAC address of a device and make sure it is assigned the exact same address via DHCP every time it is connected to the router. Using DHCP reservations, you can ensure that your laptop always gets the same IP address without having to configure a static address for it (which is a pain, since you’d have to re-configure it every time you go to the coffee shop).

Using either static addressing or DHCP reservations, you may want to make sure that “infrastructure” on your home network, like file servers, entertainment systems, or security devices always have the same IP address.

Your router’s NAT usually automatically closes off all the ports on your public IP address, making it impossible to access anything on your LAN from the Internet. In most cases, that’s a good thing – you don’t want the Internet able to reach your private network. But, in some cases, you want to make devices on your network available from the Internet (ALWAYS protected with strong passwords, of course!). The classic example is the IP camera set to watch something important on the farm – it could be the front drive, livestock, or your machine shed – you want to be able to access it from wherever you are so you can check up on it. But you might also want to be able to check and operate machinery like your grain dryer, pumps, irrigation systems, HVAC systems, etc. from a distance.

The IP camera has a webserver that uses port 80 (usually) for its interface, so the trick of port forwarding is to open one port on your public IP address and tell your router to “forward” all packets coming to that port automatically to port 80 (or whatever port you configure) on the camera. So you “knock a brick” out of the router’s firewall by specifying one port on the public side (I like to use ports 7001-7099, because very few services use these ports) and forward that public port to a port on your camera.

The way you do this varies from router to router, but the drill usually entails going to the “port forwarding” interface on your router and specifying the incoming or public port (7001), the device that’s receiving the packets (your camera’s IP address – 192.169.1.something), and the port on the device that will receive the packets (port 80). Then, if your public IP address is 101.102.103.104, you can access your camera on the Internet at http://101.102.103.104:7001 (the IP address, a colon, and the port number). Some routers allow you to specify only certain incoming IP addresses that can access the camera, but that’s usually not a good idea because, for instance, if you want to look at the camera from your smartphone, you won’t know the IP address of the smartphone.

NOTE: some routers (stupidly, in my opinion) require that the port numbers on the public side and the private side be the same – they won’t forward port 7001 on the public side to port 80 on your camera. If you have a router like that, you’ll need to reconfigure your camera (or whatever device you have) to the appropriate port (e.g. 7001) port before you can do the port forward. You shouldn’t forward ports under 1024 unless you know exactly what you’re doing, because you might be disabling something your router needs to function properly. Forwarding extremely popular ports like 80, 20, 21, 22, 23, 25, etc. can also attract password crackers and other undesirable elements to your network.

Let me emphasize at this point the importance of a strong password on anything that’s exposed to the Internet – if you can access it, so can anyone else, so make sure it’s locked down.

On my own home network, I have several ports forwarded to different IP cameras around my property, as well as ports forwarded to my desktop Windows machine (using VNC so I can access it easily when I’m away) and my Linux development machine (using SSH). I can actually access any of those devices using my smartphone, so I can stay on top of things anywhere I have an Internet connection.

Click here to go to Part 3

Getting the most out of your router – part 1

The venerable Linksys WRT54G – Courtesy of Linksys

The world of networking is complex, including that little bundle of technology sitting on your shelf – your router. It is actually a pretty amazing little device that can probably do more than you realize. In truth, the typical “consumer” router is a combination of three devices:

  1. A router – a router is a device with two or more ports that is used to connect two or more networks together. Typically, the consumer router has a “WAN” port that connects to the “Wide Area Network” of your Internet Service provider and “LAN” ports for your Local Area Network.
  2. An Ethernet switch – you may have noticed that your router doesn’t have two ports; most actually have five: one WAN port and four LAN ports. Inside the box is an Ethernet switch that turns the LAN port of the router into 4 LAN ports to which you can connect wired computers, servers, and even additional Ethernet switches if needed. Actually, it’s 5 LAN ports, because the fifth one is connected to…
  3. A WiFi Access Point – this is simply a wireless radio connected to an internal LAN port that provides a WiFi signal for computers, tablets, smartphones, IP cameras, entertainment systems, and all kinds of other things. This WiFi radio is usually optimized for short-range, indoor use, providing maximum throughput for a short distance.

One of the odd and important facts about a router is that it has two Internet Protocol (IP) addresses: one on the network to which its WAN port is connected (which should be a public IP address, visible from the Internet – e.g. 108.162.198.52, ayrstone.com’s address), and one on the LAN port, the network it creates for you (a private address, not usable from the Internet, e.g. 192.168.1.1). Its job is to take data packets from each network and move them to their destination network. So, if your computer is at 192.168.1.50 on the LAN, and it receives a packet on its WAN port destined for 192.168.1.50, it passes it to the LAN port where it finds its way to your computer. Similarly, if your computer creates a connection to 108.162.198.52, the router receives packets from your computer on its LAN port and routes them to the WAN port. When you print to your networked printer (at, say, 192.168.1.100), it receives packets from your computer and then just turns them around and sends them back down the LAN port, since they are not destined for the Internet.

The ability of the router to accept traffic on a single public IP address and enable several different computers at private IP addresses to have separate “conversations” with the Internet is called “Network Address Translation” or NAT. The way it does this is by using “ports” – simply numbers associated with every IP address.

Each IP address has 65,535 possible ports. Some ports have pre-assigned purposes, some are available for use by applications, and some are ephemeral – here’s a good explanation of which are which. NAT uses those ephemeral ports to keep the conversations between your network and the Internet straight; for instance, your computer’s conversation with this website might be using your public IP address’s port 55135, while another computer on your network might be having a conversation with another website on port 61234. To the two websites, it looks like the traffic is coming from a single computer, specifically your router. Your router then routes the responses from the websites to the correct computer based on the port on which the data comes in.

The private IP addresses on your network are usually assigned by your router using Dynamic Host Configuration Protocol or DHCP. When a computer connects to your network, it will ask the router for an address via DHCP, and the router will provide it one (assuming it has one to provide). The address is referred to as a “lease,” because it will expire at some point after the device leaves the network, so it can be used by another device. However, note that you can simply assign a static IP address to a device in your network, as long as (1) it is an IP address inside your network (usually meaning it has the same three first numbers as everything else on your local network, e.g. 192.168.1.x) and (2) it does not interfere with the DHCP settings on your router (if your DHCP server begins at 192.168.1.50 and your router is at 192.168.1.1, use static addresses between 192.168.1.2 and 192.168.1.49, and KEEP TRACK OF THEM WHEN YOU ASSIGN THEM!!!)

The first tip for getting the most out of your router is this: set up your router’s DHCP server carefully. I suggest setting your router’s IP address as 192.168.1.1 and setting your router’s DHCP range from 192.168.1.50 to 192.168.1.254 (204 addresses). The reason for this particular range is that, first, it allows for a large number of devices to automatically use your router, getting private IP addresses via DHCP (204) but still leaves you 48 addresses you can use for devices you want to statically assign. This gives you the flexibility to maintain, expand, and control your home network.

Alternately, most modern routers support DHCP Reservations, which allow you to ensure that the router ALWAYS provides the same IP address to a device on the network. That way you get the advantage of a static IP address (knowing where a device is at all times) with the advantage of DHCP (ease of configuring devices and the IP addresses being managed by the router).

Click here to go to part 2

Myths about Wireless Farm Networking

Myths are fun, but this guy won’t help you get the work done.

We have been talking about the myths of Wireless Farm Networking lately, and I wanted to add my own two cents worth here.

The article about the myths is excellent and stands on its own – I strongly suggest you read it. I thought I’d add a little about the topic here, by focusing on three aspects: Wireless, Farm, and Networking.

Wireless – I have seen “wired” farm networks – a number of livestock producers have trenched and buried fiber lines to their livestock buildings (Ethernet can only go 100 yards) for monitoring and control. However, it’s much cheaper now to go wireless, and it gives you much more flexibility. To build a good wireless network on your farm, you have to learn about “line of sight” (or, more correctly, Fresnel Zones) and position equipment so it has both power available and good radio signal from the rest of the network. It used to be that having a private wireless network across your farm was either technically impossible or cost-prohibitive, but we are proving that wrong every day.

Farm – A farm is pretty much defined as being in a rural area, and we’ve all seen that what works in town doesn’t necessarily work on the Farm, and vice-versa. The AyrMesh network is designed for farm use – relatively few people and machines spread out over a relatively large area. There are lots of good solutions for networking in town, where there are a lot of people in a small area, but they will never work as well as a solution designed specifically for the farm.

Network – The Internet Protocol (IP) network is the single, unified data communications medium for this century. I have seen farms that had a wireless link for their weather station, another wireless link for their GPS corrections, a home WiFI system and cellular coverage. Getting rid of the “point-to-point” solutions and putting everything on the network enables you to collect and transmit the data you need more easily, deliver what you need over the Internet, and gives you the option of adding new technologies to your operation quickly and easily.

Some people think this is revolutionary, but I would argue nothing could be further from the truth: this is the result of a clear evolution over time. In the 1970s academicians started tying computers together and transferring data over the first networks. In the 1980s networks came out of academia and started being used for business and even personal purposes; in the meantime, ham radio operators and researchers were starting to send digital data over radio waves. In the 1990s companies started to network their offices to share files and printers, as well as sending emails. Building-to-building microwave links became relatively common, and Industrial Automation moved to IP networks. In the 2000s the consumer internet became a reality, as did WiFi for wireless data, and we all got “on the net.” Now, in the 2010s, we have the Internet of Things and the low cost of high-power wireless networking, making this the decade of Wireless Farm Networking. The ability to monitor farm data and even control farm operations using a local network connected to the global internet will change agriculture forever.

What do YOU want for Christmas???

We were curious about that question ourselves, so we commissioned a survey of growers across the corn belt.

We got over 100 responses to our call from Minnesota to Tennessee and Ohio to Nebraska, all across the Midwest.

All things wireless top the list of technology-related gifts that farmers want for Christmas this year. More than 40 percent of those surveyed are putting wireless remote cameras and wireless remote weather station / soil sensors on their lists. And nearly 50 percent would like a wireless farm network that extends up to 7.5 miles from their homes.

Farmers are also frustrated by the lack of connectivity on their farms. In fact, nearly 80 percent of those surveyed said they are frustrated that their wireless network does not extend to sheds, grain bins or nearby fields.

Other technology-related gifts that farmers say they want according to the survey include wireless remote grain monitoring, an iPad or other tablet, a new router, and remote thermal imaging.

If you’re worried that Santa might not deliver this year, you might want to take care of yourself: go to ayrstone.com and start a new AyrMesh Network for yourself (or expand your existing network) so you have the wireless access you need!