Tag Archives: wireless farm network

A little technical talk about WiFi

Adam Gittins has published another terrific post on his Precision Ag Explained blog about problems he ran into getting his AyrMesh network up and running.

It reminds me that WiFi isn’t entirely straightforward, and some explanations of the vagaries are in order.

As Adam points out, interference is potentially a huge problem on WiFi. One problem is that the 2.4 GHz. WiFi band was partitioned out into 11 channels (in the U.S. and Canada), but most of those channels actually OVERLAP each other. There are only THREE DISTINCT CHANNELS: 1, 6, and 11 – all the other channels overlap at least one of these three (and each other). For a good explanation with graphics, I always recommend Wikipedia.

As he points out, if you have your “indoor” WiFi and your “outdoor” WiFi on the same channel, they’ll interfere with each other, reducing the range and bandwidth of both. Even if they are less than five channels apart this will happen to some degree. The AyrMesh network always comes by default on channel 6, so you can either change your home router’s channel to 1 or 11, or change the AyrMesh channel using your account on AyrMesh.com.

InSSIDer – courtesy of MetaGeek

We use and recommend a couple of tools to help discover WiFi interference. InSSIDer for Home is a free program that run on Windows, Mac, or Android, and shows all of the WiFi Access Points in range of the computer and a pretty good estimate of the signal strength of those Access Points. (NOTE: It has recently been pointed out that getting InSSIDer for Home from the Mac App Store actually costs $4.99)

WiFi Analyzer for Android, Courtesy of farproc

WiFi Analyzer is another free app that runs on Android. It’s a little simpler and quicker than InSSIDer, and has become my “go-to” solution for taking a “quick look around” on my phone.

It’s worth noting that there is no analogous app for the iPhone because Apple doesn’t allow direct access to the WiFi card. However, there are similar apps available if your iPhone is jailbroken.

Chanalyzer Spectrum Analysis, courtesy of Metageek

Just to make it a bit more interesting, however, I have to point out one more fact: WiFi is far from being the only thing using the 2.4 GHz radio band. Cordless phones, baby monitors, wireless surveillance cameras, certain radars, and microwave ovens all use the same spectrum, so they can all potentially interfere with your WiFi. This is, in fact, precisely why Metageek gives away InSSIDer – they sell tools called “Spectrum Analyzers” – their “Wi-Spy” Spectrum Analyzers are excellent and relatively inexpensive. They can show not just WiFi interference, but all the interference in the 2.4 GHz. band. They even offer a very nice “Wi-Spy mini” bundled with their “InSSIDer for Office” product for only $199.

You probably won’t need a spectrum analyzer for your AyrMesh network. Out in the country there’s very little interference, and it takes a while to learn how to use a spectrum analyzer effectively, even with Metageek’s excellent software.

However, getting a copy of InSSIDer and/or WiFi Analyzer is something I recommend to everyone who’s curious about their local WiFi environment.

New Ayrstone Product: the AyrMesh Receiver

Today we’re announcing a new product in the Ayrstone AyrMesh line: the AyrMesh Receiver.

The AyrMesh Receiver is actually, of course, more than a receiver – it transmits and receives data – but it is designed as a simple, low-cost way to put one or more “wired” (Ethernet) devices onto an AyrMesh network. It is very similar to our AyrMesh Hub, but with a couple of important differences:

  1. The AyrMesh Receiver connects to the Hub’s WiFi signal, not the wireless mesh signal.
  2. The AyrMesh Receiver does not create its own WiFi access point – it is a client device only
  3. The AyrMesh Receiver uses a directional antenna for maximum range – it can be positioned up to 2 miles away from an AyrMesh Hub (optimal conditions).

Typical uses for the AyrMesh Receiver include:

  1. Using high-end IP cameras or other network devices that do not have WiFi
  2. Bringing the AyrMesh network inside of metal buildings – an AyrMesh Receiver can be placed on the outside of the building and devices inside can be connected to the LAN port of the receiver. You can even put a WiFi access point inside the building so you have WiFi indoors as well as outdoors.
  3. Connecting devices like network-enabled weather stations in more distant fields – since the AyrMesh Receiver can be up to 2 miles from your furthest Hub, you can now include areas in your network that were previously unreachable.

The AyrMesh Receiver is available now from Ayrstone – please see our website for details.

Wireless Farm Networking: what and why

A few years ago, we identified a real need in the agricultural market for more robust, internet-connected farm networks. This was driven by our work in precision agriculture; what we saw was that there was a glut of usable data that could be helping growers make better (and more profitable) decisions, but that data was mostly trapped on personal computers and in-cab monitors.

As we looked at this situation, we realized there were two equally important needs which were interrelated: the first is a comprehensive platform for turning all this raw data into actionable information, and the second was a facility for collecting the data and putting it to use. But there’s a “chicken and egg” problem here: if you don’t have the data, you can’t turn it into information, but there’s no good way to collect and use the data currently.

The AyrMesh Hub

So we decided to tackle the second problem: create an “Enterprise Network” for farmers and ranchers, so they could collect data from their farm operations effortlessly and use that data to make more informed decisions. We realized, of course, that a typical network was not going to work for the farm: everything is very far apart, so laying cable (or even fiber) is generally not a workable solution. Besides, the network should ideally encompass the tractors, sprayers, and harvesters out working in the fields, so wireless is the only option. This was the impetus that gave birth to the original AyrMesh Hub.

The idea was fairly simple: take some of the ideas used in the “Roofnet” project at M.I.T. and adapt them to building a low-cost wireless mesh network for farm use. The key requirements were:

  1. Use WiFi – other, proprietary mesh networks had been tried, but they require a wireless “client” device for anything you want to put on the network. Lots of things have WiFi today – it’s an easy, familiar, open technology
  2. Design the system for a farm – provide good bandwidth to relatively few “clients” spread over a very wide area. Most WiFi devices in the market today are designed for exactly the opposite: a metropolitan mesh network, where you have many people in a very small area and high bandwidth demands.

What we have seen is that, like all technologies, there is an adoption curve. The first step is the desire to use one’s Internet connection beyond the confines of the house. Especially with the advent of smartphones and tablet computers like the iPad, the ability to have instant information and communications everywhere you go on the farm can be a reality, even if cellular data is not available everywhere on your farm.

A WiFi Camera

The second step is connecting sensors to the network to “keep an eye out” on your farm. The most popular and demanded sensor, of course, is the IP camera. The ability to bring up a view of an area of your farm, whether to see the settings on the grain dryer, keep an eye on livestock (especially in the middle of the night), or as the basis for a security system, cameras seem to have a place on every farm. But, moving forward, putting network-connected environmental sensors in livestock buildings and distant fields can bring terrific pro

A Weather Station at the edge of a field

ductivity gains. Knowing the temperature and humidity in your livestock barns can help optimize your HVAC usage, while knowing the wind and rainfall in a distant field can save a trip if it’s too windy or too wet to work.

Lots of data here…

In addition, some of the precision agriculture vendors are starting to put WiFi into their in-cab monitors, so you can access the data on those monitors over the network instead of having to move cards or USB sticks around. Being able to access your “as applied” and harvest data allows you (or your agronomist) to much more easily determine your variable rate applications as you go through the season, potentially cutting your costs and maximizing your yield.

Network-controlled relay, courtesy controlbyweb.com

The third step is farm control: being able to actually get things done on the farm over the network. Grain dryers, pumps, irrigation systems, HVAC systems, and other equipment could be controlled over the network. This means that you can potentially control your grain dryer from the bedroom, or even while you’re running errands in town, since your network is connected to the Internet.

What we learned in the 1990s and 2000s when networks were becoming ubiquitous in the corporate world is that the presence of the network creates opportunities to improve the business in unexpected ways. We don’t pretend to know what all the uses are for a wireless farm network, but we’re very excited to see what they are. We’re here at the very beginning of farm networking, and the future is limitless.