Tag Archives: wireless

Welcome Eero and Google to the world of Mesh

Since we started marketing the AyrMesh system five years ago, we have gotten inquiries from folks who have large houses, offices, and small hotels/motels – can AyrMesh work indoors? The answer, of course, is that it can work, but it’s not optimal for a number of reasons, and we do not recommend it. AyrMesh is designed for outdoor use, mainly in rural areas.

We have been able to recommend the fine Open-Mesh products for indoor and urban outdoor use, but some new products have recently entered the market.

Eero was the first in this space, with a very nice-looking product and very good technical specifications. Unlike Open-Mesh, they do not have any way to mount their units outdoors, and they only offer one model (available in a 1-, 2-, or 3-pack).

Then, this week, Google announced the new Google WiFi product, utilizing a very similar approach of very nice-looking indoor meshing access points for larger houses. The Google WiFi products will be available in November, but they can be pre-ordered.

Open-Mesh uses their Cloudtrax website and apps to control their access points; we have used Open-Mesh here in the Ayrstone lab for years and found it to be excellent. It’s a fair bit more complicated than AyrMesh, but it has the more “commercial” features you might want for a business or a motel, and the more complex features are easily ignored for a home setup.

It’s worth mentioning that there have long been WiFi Repeaters (also known as “boosters” and “extenders”) that connect to your WiFi router and create a new WiFi signal, and devices like the Apple Airport routers that use “Wireless Distribution System” (WDS). Although a single repeater can work well, and three Apple Airport routers using WDS (one connected to the Internet and two “extenders”) can work, they don’t have the routing “smarts” of a real mesh network, and they can cause more problems than they solve. For a large house, a real WiFi meshing product like these will provide much better results without running Ethernet cables… of course, for the absolute best WiFi, there is no substitute for just running Ethernet and putting separate Access Points in each location you need WiFi. If you were clever enough to run Ethernet to the far reaches of your house before the drywall, all you have to do is plug in some dumb access points in the Ethernet – no need to mess with the indoor mesh.

The new Eero and Google WiFi products use apps to configure and control the network – I don’t know if there is a website option available, but I get the impression that the apps are the only way to control them. I don’t know about you, but my poor phone is “full” of apps, and I really don’t want another one.

So my own view is that these new players are not quite as good as what already exists in Open-Mesh, but, of course, your mileage may vary, Of course, they are being marketed like crazy, so you’re going to see them in the press all over the place.

What I think is important is that meshing WiFi is becoming mainstream, and, if you live in a large house, you don’t necessarily have to run Ethernet to get WiFi throughout the house.

Saving money with AyrMesh

There are all kinds of new technologies and products available for farming – these new “AgTech” products hold real promise to change the practice and the economics of farming. But you have to evaluate them realistically to understand how they will help you improve your profit: increase revenue or save costs.

AyrMesh was designed specifically to help save costs on the farm, so it provides increased profits no matter what happens to yields and crop prices. There are several ways in which AyrMesh helps you reduce costs, directly or indirectly:

  1. Reduce the cost to simply move data – your cellphone (and maybe your tablet and/or laptop) has a cellular radio for data, and you pay a premium for using more than a minimal amount of data per month. By using the AyrMesh network, however, you can be disconnected from the cellular data network and save money you would have to send to the cellular companies.
  2. Employ new technologies that can save money – because AyrMesh is a standard, Internet-Protocol (IP) network, you can avail yourself of off-the-shelf products that just connect to your network. Examples include things like networked weather stations and soil sensor systems, but also grain dryers and irrigation systems. As security becomes an increasing concern on the farm, having an AyrMesh network allows you to quickly and easily place IP cameras so you can keep an eye on distant parts of the farm
  3. Be prepared for the future – new, time-saving and money-saving products are coming up fast, and you can be ready to put them to work. New autonomous vehicles, remote sensors, and remotely-operated machinery will be able to magnify the effort you put in on the farm, just like tractors and combines did in the late 1800s, increasing the profitability of farms.

But be careful: a lot of products being sold come with a “small monthly fee” to pay for a cellular modem to move data from the device to the company’s cloud servers. It’s a business model that works and it makes it easy to install new products, because the vendor doesn’t have to worry about setting up a network. However, as you adopt more and more of those products, the number of small monthly fees is going to add up fast, and none of them will work in fields without cellular connectivity.

Look, electronics and data aren’t going to grow the crops. But the information they can provide you can help you make better decisions, both season to season and day to day, to save money and increase yields. Smart investment in AgTech begins with thinking about the data – what you can use, how you will use it, and, most importantly, how you will get it from where it is generated to where it is useful. We are here to help with that last bit.

AyrMesh Field Hub – Solar powered to extend the network

We have been asked multiple times how to extend the AyrMesh network beyond the availability of plug-in power. The key, of course, is solar panels and/or wind turbines, along with batteries to hold the power when the sun isn’t shining or the wind isn’t blowing.

Tycon Power has solved this problem for us by developing an integrated system just for the AyrMesh products: Hub, Receiver, or Bridge radio. The product to use is their RPPL-1212-36-30 unit. You can buy it directly from Tycon at their store site. This system with the 30 Watt solar panel will work in most of the country that receives an average of 3.5 hours per day or more – the red and dark orange bands on the standard insolation map. For areas in the light orange or yellow areas on that map, you will need to add a second 30W solar panel (with mounting bracket) or a wind turbine to keep the batteries charged.

Tycon also makes larger systems for multiple devices. The RPST-1212-100-70 system will provide power for two or three devices – for instance, a Bridge radio and a Hub or two “back to back” bridge radios.

As with the smaller system, if you get less than an average of 3.5 hours of sunlight per day, you’ll need to augment the power generation of that system with an extra 70W solar panel (and mounting bracket) or the wind turbine.

Higher is better

What does it take to set this up? Two things: very rudimentary wiring skills to connect the batteries and the solar panel with the solar controller, and the ability to set up a strong mast or tower. In our tests, we used a 7′ tall free-standing pole, but, for practical use, you’ll want a much taller pole or tower, embedded into the soil with concrete. You need, of course, to get the radios up as high as practical, but at least 25 feet above any obstacles for maximum range. This may require the use of a pole with guy lines or even a tower.

The system provides Power over Ethernet (PoE) for the radios, just like the power supplies that come with the AyrMesh products. The mechanical considerations (attaching the solar panel and battery pack to the pole or tower) is extremely simple, using either U-bolts or hose clamps.  Using this to extend your network out into your fields will enable you to use the AyrMesh Cab Hub to automatically move data off your in-cab computers and have WiFi coverage in your cab wherever you are on the farm.

If you have any questions about this, of course, please feel free to comment on this post or get in touch with us at support@ayrstone.com.

Ayrstone in the RoyseLaw AgTech Incubator

For the last few months, we have been fortunate enough to be part of the RoyseLaw AgTech Incubator. Our involvement in the incubator many benefits, including access to top people in California business and agriculture as well as the Silicon Valley venture capital community. We expect our involvement to result in many benefits to us as we move forward.

The most important reason we wanted to be part of the incubator, however, was to associate ourselves with some of the most interesting up-and-coming companies in agricultural technology. I would encourage you to check them out to see where “Ag-Tech” is going today.

One other benefit of the incubator is that we are part of the second annual Silicon Valley AgTech Conference on May 11. If you are interested in the future of agricultural technology and you’re going to be in Northern California, please attend the conference. There will be AgTech companies (like Ayrstone), investors, growers, and others with an interest in agriculture and technology.

Long Range WiFi: two approaches

We didn’t invent the idea of putting WiFi on farms and ranches, although I think we’ve done a lot to popularize it. And it’s not really WiFi that’s important, it’s just having a farmwide network that you can connect to and move data with.

When we started, we realized there were two ways we could build out the farm wireless network, and that we’d need to support both ways. However, we had to start somewhere, and we knew that the best short-term “proof of concept” was using the mesh network approach: a bunch of high-power WiFi Access Points that are connected to the Internet and talk to each other using a meshing protocol. That’s what gave rise to the AyrMesh Hub.

Because the Hubs can be up to 2.5 miles apart, it allows you to extend your network out quite a ways from your home place, and that’s useful for a lot of people. It also allows you to “get in the game” for a minimal investment – a few hundred bucks for a Hub and a little time putting it up high and out in the clear gets you WiFi across your farmyard and out into your fields. Then you can extend the network from there with additional Hubs.

However, sometimes you just want to connect someplace into your network, and you don’t need to have WiFi. For those cases, a different approach is optimal: point-to-point microwave links, also known as “bridges.”

A bridge can use WiFi or a WiFi-like signal to connect two locations and pass data between them. Typically they are “Layer 2” devices, meaning that they work just like a long, wireless Ethernet cable. You plug one radio into your network (typically your router) and then plug the other radio into whatever you want to put on your network (a computer, IP camera, WiFi access point, etc.), and everything works just like it was plugged into your router.

The AyrMesh Bridge uses microwave radios that use the 5.8 GHz. band (used for 802.11 WiFi “a,” “dual-band n,” and “ac”), but they use a special “narrow-band” microwave signal that increases the range, reduces the effects of interference, and makes the signal invisible to WiFi “sniffers.”

Of course, if you are just connecting some distant device or devices into your network, you can also use an AyrMesh Hub and an AyrMesh Receiver. It will actually work the same way; the differences are:

  • The AyrMesh Bridge is just a wireless Ethernet cable that doesn’t provide a wireless signal usable by anything else. The AyrMesh Hub provides WiFi that other devices can use.
  • The AyrMesh Bridge is a “1-to-1” system, but you can have several Receivers talking to one Hub.
  • The Receiver can be up to 2 miles from the Hub, but the Bridge radios can be up to 5 miles apart.

It’s not necessarily an “either/or” thing. Several AyrMesh users are using the AyrMesh Bridge to reposition their Gateway Hub to the top of large structures (e.g. grain legs) to give the Hubs maximum range. A couple of people are using their Hubs for WiFi but providing connectivity to other buildings using Bridges (with the Hub and the Bridge radio mounted next to each other on top of the house or office). And you can use a Bridge connected to a Remote Hub to connect a device several miles away from the Hub.

There are a lot of folks out there selling wireless bridges – we think the AyrMesh Bridge is the best for one important reason: it’s the easiest to set up and use. No configuration is needed: you just connect both radios in the Bridge to your router. They download your configuration from AyrMesh.com and then all you have to do is mount them outside pointing at each other.

Introducing the AyrMesh Bridge

Today we are pleased to announce the availability of the AyrMesh Bridge.

The AyrMesh Bridge is a simple, wireless, point-to-point bridge. It serves a single purpose – to connect a distant device to your local network – a 5-mile long wireless Ethernet cable.

Wireless bridges have been around for a long time, and we had initially rejected the idea of adding a wireless bridge to the AyrMesh product line. If you have the Hubs and Receivers, why do you need a Bridge?

Testing in California

However, several customers have come to us in the last year with the same problem: their Gateway Hubs are on top of their homes or offices, but they would be better placed on top of a grain leg or another building with a better “view” of the surrounding fields.

In these cases, it would be possible to use one Hub near their routers to feed a Hub on the high location, but that would limit the ultimate range of the AyrMesh network (because we recommend only using up to three “hops” across Hubs).

The truth is that there are a lot of places the AyrMesh Bridge can be used:

  • Connecting an isolated outbuilding to your network (if you don’t want or need WiFi – if you want or need outdoor WiFi, of course, the Hub and a Receiver is a better solution)
  • Connecting a non-WiFi device that is more than 2 miles from a Hub or Receiver
  • Any other situation where you think “I wish I had an Ethernet cable that long.”

We are using a special radio signal for the AyrMesh Bridge to maximize the range. It is a narrow-band 5 GHz. signal, which is hidden and fully encrypted. Although it uses the 5 GHz WiFi band, it does not register with any WiFi equipment because it is a narrow-band signal. This minimizes interference with 5 GHz. WiFi  signals, but does not completely eliminate it. If you are using 5 GHz WiFi equipment (802.11a, ac, or dual-band n), you’ll want to use different channels for your AyrMesh Bridge than your WiFi equipment.

Contents of the AyrMesh Bridge package

The AyrMesh Bridge comes complete with two radios (one for each end of the Bridge), power supplies, and 10′ Ethernet cables. Like all Ayrstone AyrMesh products, each radio is initialized by plugging it into your router until it shows up on AyrMesh.com, then it can be installed.

Like all AyrMesh devices, the Bridge radios are controlled by AyrMesh.com, as shown here. There is only one control for the Bridge – the 5 GHz. channel can be set to 149 (the default), 153, 157 (as shown here), 161, or 165. Note that these are distinct channels; unlike the 2.4 GHz. WiFi channels they do not overlap.

The AyrMesh Bridge is the simplest way to connect a device to your network at a considerable distance. Please contact us if you have any questions or comments about it.

 

 

WiFi standards – 802.11a to 802.11z

It seems like every time you look around there’s a new crop of WiFi routers offering unbelievable speeds and ranges due to the use of a new WiFi standard. Years ago, WiFi started out with 802.11a (back in the last millenium) and then 802.11b, which gave way to 802.11g, which was replaced by 802.11n, and new routers use 802.11ac. And, if you’re wondering, yes, of course there’s a new one on the way, currently called “802.11ax.”

There are also many ancillary standards associated with these, even an 802.11z standard (having to do with extensions to Direct Link Setup, whatever that means). The “a,” “b,” and, to some degree, “g” standards are, for all intents and purposes, obsolete, because nobody has built equipment using those standards for a long time. On the other hand, all the standards are “backwards-compatible,” so the newest equipment can still interoperate with the oldest “a” and “b” equipment.

For us here in the Ayrstone labs, the amusing thing about all these advancements since 802.11g in 2003 is that they are squarely centered on one thing: improving indoor WiFi performance. The reason that amuses us, of course, is that it’s exactly the opposite of what we’re trying to do, improve outdoor WiFi performance. There has been almost nothing done to improve outdoor long-distance WiFi since the 802.11g standard.

Here’s a quick rundown of the various WiFi standards:

  • 802.11 – 1997 – up to 2 Mbps on 2.4 GHz and InfraRed with WEP encryption
  • 802.11a – 1999 – up to 54 Mbps on 5 GHz
  • 802.11b – 1999 – up to 11 Mbps on 2.4 GHz
  • 802.11g – 2003 – up to 54 Mbps on 2.4 GHz, WPA/TKIP encryption
  • 802.11n – 2009 – up to 600 Mbps using both 5 Ghz and 2.4 GHz, MIMO, WPA2/AES-CCMP encryption, wide channels
  • 802.11ac – 2013 – over 1 Gbps using both 5 GHz and 2.4 GHz and extra-wide channels, MU-MIMO

802.11g was the standard that made WiFi useful (effective data rates of over 20 Mbps) and safe. The original WEP encryption standard in 802.11b was fatally flawed and easily broken – we now consider it “anti-security,” because it gives the uninitiated the illusion of security but does not actually deliver any, much like having a door made of paper painted to look like steel. WPA/TKIP encryption is still considered unbreakable (when used with strong passwords), so 802.11g WiFi devices are still perfectly useful.

802.11n added even more unbreakable security (WPA2/AES-CCMP), which is designed for large networks and organizations. It also added MIMO (Multiple Input, Multiple Output), a way of using multiple antennae to increase the bandwidth and increase the range of the WiFi signal, especially indoors. A single antenna senses “multipath” (signals bouncing off the walls and other solid objects) as noise, because they are slightly out of synchronization with signals coming directly from the other station. MIMO antennas can “correct” and re-synchronize those multipath signals, improving indoor performance dramatically in some cases. 802.11n also introduced dual-band capability, using both the 2.4 GHz and 5.8 GHz bands to increase throughput, and “wide” channels – increasing the amount of electromagnetic spectrum used from 20 MHz per channel to 40 MHz. Wide channels increase bandwidth, but at the sacrifice of range. So you can get faster data speeds close to the WiFi Access Point, but speeds will drop off quickly as you move away.

802.11ac is the latest standard, and it adds on top of 802.11n. Specifically, it allows for extra-wide channels (80 or even 160 MHz in the 5 GHz band) and MIMO improvements. In particular, it adds “MU-MIMO” or Multiple-User MIMO to expand the advantages of MIMO to multiple users of a WiFi access point, as well as increasing the number of spatial streams (from 4 to 8) and offering improved modulation techniques on the wider channels (256-QAM).

So the improvements to WiFi since 2003 can be roughly broken down into 3 areas:

  1. 5 GHz – The higher the frequency of a radio signal, the more it behaves like light, so the more it is affected by solid objects. 5 GHz. signals disperse more in air, and pass through solids even more poorly than 2.4 GHz. signals (which don’t do very well). So, with some notable exceptions (very focused point-to-point links with very clear line-of-sight), 5 GHz is only useful indoors and for very short distances.
  2. MIMO – MIMO is one of the most exciting improvements to WiFi, because it can dramatically improve indoor performance. Of course, both the access point (e.g. wireless router) and the client device (e.g. laptop) have to have MIMO to make the best use of it, but can really improve both range and throughput indoors. Outdoors, however, where there aren’t walls that signals can bounce off of, the value of MIMO is very limited.
  3. Wide channels – I sometimes explain that radio signals are a lot like plumbing. If you have a water hose with a constant pressure, you can put a narrow nozzle on it and push a little water a long ways, or you can put a wide nozzle on it and push a lot of water a little ways. Wide channels are like a wider nozzle: more bandwidth that doesn’t travel as far.

The key to getting maximum range outdoors is to “squeeze” the stream down as much as possible to force it out toward the horizon. The AyrMesh Hubs do this by going somewhat against the “trend” in WiFi:

  1. 2.4 GHz only – for lower dispersion and best penetration of solid objects
  2. SISO – focusing the radio signal (the spectral density) into a single beam for maximum range
  3. Narrow channels – focusing the radio signal into the smallest channel width for maximum range

When we introduced the AyrMesh Hub2n, we noted that it uses 802.11n technology. However, while it does comply with the 802.11n standard, it is, essentially, using the 802.11g features present in 802.11n and almost nothing unique to the 802.11n standard.

That’s not to say that we’re not keeping close tabs on the improvements to WiFi and trying to figure out ways to improve our products. By moving to 802.11n, we picked up WPA2/AES-CCMP encryption, which is actually more efficient on many WiFi radios equipped with hardware encryption, and new modulation methods which may provide marginally better performance. Right now we don’t see any improvements from MIMO, for instance, but we may yet find a way to make use of it. We also have hope that new, more efficient modulation methods could provide us new ways to increase the range and throughput of outdoor WiFi.

We also made use of another WiFi standard in the Hub2n: 802.11s, the new WiFi meshing standard. Time will tell, of course, but we hope that adopting this standard will enable us to introduce new Hub models and other equipment without changing the meshing, effectively “future-proofing” the Hubs.

What this means is that now is the perfect time to build your Wireless Farm Network using WiFi: the technology is extremely well-proven, inexpensive, and reliable. There are lots of contenders to take the place of WiFi for outdoor connectivity, from Super-High-Frequency radio to “White Space” radios (using the unused frequencies in the Television band). None of them are going to offer anything close to the price/performance you can get today out of outdoor WiFi, at least for a very long time. So you can build your network well-assured that there isn’t something waiting in the wings to make your investment obsolete. There will never be a better time to build out your Wireless Farm Network.

Bringing WiFi into your Cab – the new AyrMesh Cab Hub

There’s a lot of data being collected by monitors in the cabs of tractors, sprayers, and combines, and getting that data someplace it can be used can be critical to your operation. Today we are introducing a way to connect your tractors, sprayers, combines, and trucks to your AyrMesh Network: the AyrMesh Cab Hub.

The AyrMesh Cab Hub is a combination of three things: our trusty, patent-pending AyrMesh Hub2n, a cable that allows the Hub to be powered from a normal 12 volt utility “cigarette lighter” plug, and an external magnetic-mount antenna to get the Hub’s antenna outside and up in the clear.

When it is all set up, the AyrMesh Hub2n rides inside the cab of your vehicle, protected from shock and vibration, but mounted where you can see the “signal lights” if you need to. The cable is plugged into one of the 12v utility outlets, and the antenna is put on a ferrous surface on top of the cab. The Hub connects to the other Hubs in your AyrMesh network, giving you WiFi connectivity in your cab.

The most valuable data on the farm, and some of the hardest data to move to where it can be effectively used, are the data trapped in the monitors on your machines: as-seeded, as-applied, and harvest data. Getting that data out has been laborious (moving Compact Flash cards) or expensive and uncertain (using cellular links), so we’re trying to make it easier with the AyrMesh Cab Hub.

By using the AyrMesh Cab Hub, you’ll have a strong WiFi signal in your Cab whenever you’re in range of one of your other AyrMesh Hubs – up to 2.5 miles away. This means you can use your smartphone, tablet, or laptop from the cab of your tractor, sprayer, combine, or truck. It also makes it easy to transfer data from your WiFi-equipped in-cab monitors, like an AgLeader monitor with their AgFinity adapter, using your AyrMesh network. If your equipment doesn’t currently have WiFi, talk to your dealer about it – vendors are rolling out new products all the time.

If your monitor supports WiFi data transfer, you can use your AyrMesh network to transfer data from your monitor without having to rely on expensive and unreliable cellular links.

Please let us know what you think of this new product from Ayrstone Productivity!

Myths about Wireless Farm Networking

Myths are fun, but this guy won’t help you get the work done.

We have been talking about the myths of Wireless Farm Networking lately, and I wanted to add my own two cents worth here.

The article about the myths is excellent and stands on its own – I strongly suggest you read it. I thought I’d add a little about the topic here, by focusing on three aspects: Wireless, Farm, and Networking.

Wireless – I have seen “wired” farm networks – a number of livestock producers have trenched and buried fiber lines to their livestock buildings (Ethernet can only go 100 yards) for monitoring and control. However, it’s much cheaper now to go wireless, and it gives you much more flexibility. To build a good wireless network on your farm, you have to learn about “line of sight” (or, more correctly, Fresnel Zones) and position equipment so it has both power available and good radio signal from the rest of the network. It used to be that having a private wireless network across your farm was either technically impossible or cost-prohibitive, but we are proving that wrong every day.

Farm – A farm is pretty much defined as being in a rural area, and we’ve all seen that what works in town doesn’t necessarily work on the Farm, and vice-versa. The AyrMesh network is designed for farm use – relatively few people and machines spread out over a relatively large area. There are lots of good solutions for networking in town, where there are a lot of people in a small area, but they will never work as well as a solution designed specifically for the farm.

Network – The Internet Protocol (IP) network is the single, unified data communications medium for this century. I have seen farms that had a wireless link for their weather station, another wireless link for their GPS corrections, a home WiFI system and cellular coverage. Getting rid of the “point-to-point” solutions and putting everything on the network enables you to collect and transmit the data you need more easily, deliver what you need over the Internet, and gives you the option of adding new technologies to your operation quickly and easily.

Some people think this is revolutionary, but I would argue nothing could be further from the truth: this is the result of a clear evolution over time. In the 1970s academicians started tying computers together and transferring data over the first networks. In the 1980s networks came out of academia and started being used for business and even personal purposes; in the meantime, ham radio operators and researchers were starting to send digital data over radio waves. In the 1990s companies started to network their offices to share files and printers, as well as sending emails. Building-to-building microwave links became relatively common, and Industrial Automation moved to IP networks. In the 2000s the consumer internet became a reality, as did WiFi for wireless data, and we all got “on the net.” Now, in the 2010s, we have the Internet of Things and the low cost of high-power wireless networking, making this the decade of Wireless Farm Networking. The ability to monitor farm data and even control farm operations using a local network connected to the global internet will change agriculture forever.

Unmanned Aerial Vehicles (“Drones”) and Wireless Farm Networks

One of the hottest topics in “Ag Tech” at the moment is Unmanned Aerial Vehicles (UAVs, also known as drones) and the role they can play for the farmer. Drones are hot right now, in Ag and other industries, because technology has made them much more adaptable and much lower in cost.

The possible benefits are tantalizing: an automatic, self-flying platform that can loft things into the air, take them where you need them, and take actions you prescribe. Just a few of the things drones can conceivably do for you:

  1. Take visible-light, near-infrared, and infrared photographs of all your fields at much higher resolution and in less time than satellite
  2. Get instant thermocline and other weather data (pop up 1000′ and check the temperature, wind speed, barometric pressure, etc.)
  3. “Run and get it” service for small items (see the beer drone and Amazon Prime Air)

When I was at the World Ag Expo a few weeks ago, there were several companies showing off drones and talking about drone-based ag services. Please make note of the distinction between drones and drone-based services, because, at the moment, it’s important. Or maybe not. I’ll explain as well as possible.

The Federal Aviation Administration has had a long-standing rule against the use of UAVs for “commercial purposes” – anything involving making money. Now, you can buy model airplanes with very sophisticated self-flying and video systems for fun or research, but not for any money-making purpose. However, a number of people couldn’t help themselves in making use of these amazing machines to enhance their businesses, and they have been getting “cease and desist” letters from the FAA. One guy named Raphael Pirker actually was fined by the FAA, giving him the opportunity to challenge the fine. He appealed to the National Transit Safety Board, and the administrative judge there ruled that the FAA did not have in place any actual regulations for the use of UAVs in non-navigable airspace, and therefore could not enforce the fine against Pirker. There’s a good article about this in Scientific American.

So, apparently, one currently can use UAVs for commercial pursuits, with some (not entirely clear) limitations. I’ll bet if you take your drone anywhere near a commercial airfield, for instance, you’ll get to meet some members of law enforcement and spend time with them. I’ll bet if you take your drone near any government installation, you will get to spend a serious amount of time with members of law enforcement and/or the military. In either case I’ll wager you’ll get to contribute a good amount of money to the government. And there are undoubtedly some private citizens who will happily shotgun your UAV out of the sky on sight.

I’ll also wager that the FAA (or some other part of the government) will create some rules about UAVs to protect people from stuff falling out of the sky on top of people and property, and having our neighbors peeking in 2nd (or 102nd)-story windows. But, for the moment, it looks like the skies are open, particularly out in the rural areas, and I expect farmers to be the first to benefit from UAVs. Some people like Chad Colby are already talking publicly about the opportunities.

Honestly, I think the current “state of the art” is mostly a plaything: the drones that are currently available are mostly manually radio-controlled and focused on live picture-taking. UAVs I have seen that might be put to use on the farm must be charged, taken to the field, flown around the field, and then the pictures (or other data) downloaded off the UAV (by bluetooth, WiFi, or transfer from some kind of flash card). This is a significant commitment of time, which limits how often you can really use the drone. A crop scout may be able to save a lot of the time he would normally spend by using a UAV to survey fields, but there’s benefit to the grower having a drone or drones that would continually survey fields.

The reason I am particularly interested in Ag Drones is because I believe they can become an important part of the day-to-day information-gathering apparatus. To be truly useful, however, I believe they must be:

  • Autonomous: flying over your fields automatically without intervention. Ideally, they would have a “home” out in the field where they would stay, and they would do their flying at specific times with no human interaction needed.
  • Smart: able to recognize problems and take appropriate action – recognize if there is something different in the fields, avoid danger, and report back
  • Connected: automatically uploading data collected and sending alerts to you as needed. For instance, a drone flying over your fields taking infrared photos might use the wireless farm network to automatically upload the pictures to a service that automatically scans them for anomalies indicating crop stress.
  • Self-maintaining: self-charging and self-monitoring, needing little maintenance and letting you know when it needs “help”

My own vision is that an Ag drone should be programmed with pre-configured flight paths and connected via WiFi with a wireless farm network for constant (or at least mostly constant) communication. It should be able to download changes to its schedule and pre-configured flight paths off the network, and It should also be able to land on a platform that will automatically charge the drone’s batteries for the next flight. Set up this way:

  • The grower, scout, or agronomist doesn’t have to go out and mess around with the drone – it can just do its thing as often as it needs to (pending charging of the batteries)
  • The data can be automatically collected on the grower’s PC or on a central server (on the farm or on the Internet) – it can even be automatically processed and problems (plant stress, aberrant weather conditions, etc.) can be automatically reported to the grower
  • The drone works for the farmer, not the other way around.

All the pieces exist today to create drones that can meet these criteria, but I’m not aware of any pre-built planes or copters that are ready-to-use. However, there are open-source software projects that have built auto-pilot systems for drones and other robots (e.g. the ArduCopter), and there is discussion of induction charging of quadcopters in the “DIY” forums. And heavier-lift copters (capable of picking up fairly heavy items and transporting them) are also in the works. Imagine being able to get out your cellphone and “tell” your copter to bring you the parts you forgot back at the workshop, then hearing it whirring its way toward you a few minutes later. And then, when it delivers them, it DOESN’T TELL YOU YOU’RE AN IDIOT for forgetting the parts. For me, that would be nearly priceless.

In short, I think there are a lot of possible benefits from using UAVs on the farm, and I’m eager to see them start to deliver those benefits. However, I think a lot of the benefits are greatly enhanced by having the UAVs connected to a wireless farm network – I believe the two technologies will work hand-in-hand, each enhancing the value of the other.