Tag Archives: wireless

Unmanned Aerial Vehicles (“Drones”) and Wireless Farm Networks

One of the hottest topics in “Ag Tech” at the moment is Unmanned Aerial Vehicles (UAVs, also known as drones) and the role they can play for the farmer. Drones are hot right now, in Ag and other industries, because technology has made them much more adaptable and much lower in cost.

The possible benefits are tantalizing: an automatic, self-flying platform that can loft things into the air, take them where you need them, and take actions you prescribe. Just a few of the things drones can conceivably do for you:

  1. Take visible-light, near-infrared, and infrared photographs of all your fields at much higher resolution and in less time than satellite
  2. Get instant thermocline and other weather data (pop up 1000′ and check the temperature, wind speed, barometric pressure, etc.)
  3. “Run and get it” service for small items (see the beer drone and Amazon Prime Air)

When I was at the World Ag Expo a few weeks ago, there were several companies showing off drones and talking about drone-based ag services. Please make note of the distinction between drones and drone-based services, because, at the moment, it’s important. Or maybe not. I’ll explain as well as possible.

The Federal Aviation Administration has had a long-standing rule against the use of UAVs for “commercial purposes” – anything involving making money. Now, you can buy model airplanes with very sophisticated self-flying and video systems for fun or research, but not for any money-making purpose. However, a number of people couldn’t help themselves in making use of these amazing machines to enhance their businesses, and they have been getting “cease and desist” letters from the FAA. One guy named Raphael Pirker actually was fined by the FAA, giving him the opportunity to challenge the fine. He appealed to the National Transit Safety Board, and the administrative judge there ruled that the FAA did not have in place any actual regulations for the use of UAVs in non-navigable airspace, and therefore could not enforce the fine against Pirker. There’s a good article about this in Scientific American.

So, apparently, one currently can use UAVs for commercial pursuits, with some (not entirely clear) limitations. I’ll bet if you take your drone anywhere near a commercial airfield, for instance, you’ll get to meet some members of law enforcement and spend time with them. I’ll bet if you take your drone near any government installation, you will get to spend a serious amount of time with members of law enforcement and/or the military. In either case I’ll wager you’ll get to contribute a good amount of money to the government. And there are undoubtedly some private citizens who will happily shotgun your UAV out of the sky on sight.

I’ll also wager that the FAA (or some other part of the government) will create some rules about UAVs to protect people from stuff falling out of the sky on top of people and property, and having our neighbors peeking in 2nd (or 102nd)-story windows. But, for the moment, it looks like the skies are open, particularly out in the rural areas, and I expect farmers to be the first to benefit from UAVs. Some people like Chad Colby are already talking publicly about the opportunities.

Honestly, I think the current “state of the art” is mostly a plaything: the drones that are currently available are mostly manually radio-controlled and focused on live picture-taking. UAVs I have seen that might be put to use on the farm must be charged, taken to the field, flown around the field, and then the pictures (or other data) downloaded off the UAV (by bluetooth, WiFi, or transfer from some kind of flash card). This is a significant commitment of time, which limits how often you can really use the drone. A crop scout may be able to save a lot of the time he would normally spend by using a UAV to survey fields, but there’s benefit to the grower having a drone or drones that would continually survey fields.

The reason I am particularly interested in Ag Drones is because I believe they can become an important part of the day-to-day information-gathering apparatus. To be truly useful, however, I believe they must be:

  • Autonomous: flying over your fields automatically without intervention. Ideally, they would have a “home” out in the field where they would stay, and they would do their flying at specific times with no human interaction needed.
  • Smart: able to recognize problems and take appropriate action – recognize if there is something different in the fields, avoid danger, and report back
  • Connected: automatically uploading data collected and sending alerts to you as needed. For instance, a drone flying over your fields taking infrared photos might use the wireless farm network to automatically upload the pictures to a service that automatically scans them for anomalies indicating crop stress.
  • Self-maintaining: self-charging and self-monitoring, needing little maintenance and letting you know when it needs “help”

My own vision is that an Ag drone should be programmed with pre-configured flight paths and connected via WiFi with a wireless farm network for constant (or at least mostly constant) communication. It should be able to download changes to its schedule and pre-configured flight paths off the network, and It should also be able to land on a platform that will automatically charge the drone’s batteries for the next flight. Set up this way:

  • The grower, scout, or agronomist doesn’t have to go out and mess around with the drone – it can just do its thing as often as it needs to (pending charging of the batteries)
  • The data can be automatically collected on the grower’s PC or on a central server (on the farm or on the Internet) – it can even be automatically processed and problems (plant stress, aberrant weather conditions, etc.) can be automatically reported to the grower
  • The drone works for the farmer, not the other way around.

All the pieces exist today to create drones that can meet these criteria, but I’m not aware of any pre-built planes or copters that are ready-to-use. However, there are open-source software projects that have built auto-pilot systems for drones and other robots (e.g. the ArduCopter), and there is discussion of induction charging of quadcopters in the “DIY” forums. And heavier-lift copters (capable of picking up fairly heavy items and transporting them) are also in the works. Imagine being able to get out your cellphone and “tell” your copter to bring you the parts you forgot back at the workshop, then hearing it whirring its way toward you a few minutes later. And then, when it delivers them, it DOESN’T TELL YOU YOU’RE AN IDIOT for forgetting the parts. For me, that would be nearly priceless.

In short, I think there are a lot of possible benefits from using UAVs on the farm, and I’m eager to see them start to deliver those benefits. However, I think a lot of the benefits are greatly enhanced by having the UAVs connected to a wireless farm network – I believe the two technologies will work hand-in-hand, each enhancing the value of the other.

A day at World Ag Expo, Tulare, CA

I spent the day of February 12 at the World Ag Expo in Tulare, California – one of the biggest farm shows in the world, it’s a good place to see some new stuff and talk to some interesting people. Click on the pictures below to see them “full-size.”

The morning dawned clear, warm, and sunny, like it always is in California… JUST KIDDING! It was cool and so foggy I had to slow down to 35 miles an hour driving across the valley – the infamous “Tule Fog” that occasionally causes huge pileups on Highway 99. However, it burned off around noon and it actually did turn warm and sunny, making it a rare delight for this time of year. The winter in California has been surprisingly – distressingly – warm and dry, and I saw almond trees starting to bloom in the fields on my way across the valley, which is not very common in mid-February.

The “big guys” were there, but I seldom find anything interesting about what they are displaying at farm shows. I went through the Deere tents but they seemed mostly focused on selling t-shirts and caps, and they had equipment for the kids to fall off of. I thought it was funny that the news van was parked right outside the John Deere booth, so I took a picture of it. However, that was the only thing of note there.

There are two companies selling “in-cab” systems that now have network connectivity. Raven‘s new displays actually have an Ethernet port on them, so they can be connected directly to an in-cab AyrMesh Hub and be on the network that way. (They are designed for use with Raven’s “Slingshot” system)

Many of their displays also have USB ports, and I believe you can use a WiFi adapter with them, although I’m not completely sure.

We have not been able to determine exactly what can be done with the Raven displays if they are connected to the network, and Raven has not been very helpful. We’d be very interested in talking to any AyrMesh users who have Raven Envisio Pro or Viper 4 displays.

The other company that has embraced network-connected displays, as mentioned in previous posts, is AgLeader. They were here, showing their WiFi AgFiniti product, and their booth seemed to be very busy. It seems to me that they are a company that has “gotten it” on the importance of network connection and collecting data wirelessly from the cab, so it was gratifying to see so many farmers looking at their solutions.

I mostly like to go into the halls to see the “small booths” that are populated by newer, smaller companies. In California, you see things that are quite different from what you see in the Midwest – sometimes they are only interesting in the odd agricultural climate of the west, but sometimes new things show up that will have a large effect on the general agricultural industry.

With California in a severe drought, a whole slew of companies were there talking about water: measuring it, storing it, and controlling it. Weather stations, soil moisture sensors, and irrigation control. As Mark Twain famously said about the west, “Whiskey’s for drinking and water’s for fighting over,” but the fighting is done and farmers are left to make do with what they can get. Companies like MeasureTek, shown at left here, and Western Weather, right next to them, are using “industrial grade” sensors to monitor weather and soil conditions. They have built “private cloud” solutions to capture the data from the sensors and present them to growers, and the sensor “pods” themselves can be connected to the Internet with cellular or satellite, or just connected to an AyrMesh Receiver or Remote Hub. PureSense, a company that provides not just monitoring but also control of irrigation systems for optimal water use, had a very busy booth. T-L Irrigation was also showing sensing solutions with their irrigation controllers, as well as displaying Internet control of irrigation systems. Valley, Reinke, and Lindsay were also there, but they were focused on irrigation equipment and controllers, less on tying in sensors to irrigation.

The other thing that caught my eye at the show was the flush of new companies that are getting into the Farm Management Software market. Of course, Trimble was showing their Connected Farm solutions, featuring FarmWorks software, and SST, a long-time player in this market, was there. However, FarmLogic did not seem to be in attendance, even though the program said they were. Newer, “cloud-centric” companies offer some unique advantages over the “old guard.” AgWorld is a company out of Australia; I saw them last year and thought they were interesting – theirs is a browser-based farm management application that runs on just about anything with a browser – computer, tablet, or phone. I can’t tell whether it’s really going to be a winner or not, but it has promise. OnFarm is another company that was displaying at WAE. Their premise isn’t to manage and store all your farm’s information, but rather to arrange and manage all the sources of your farm’s information. Once again, I think it’s too early to tell how useful it will be, but it is interesting. There are similar offerings, like FarmLogs, that are just as interesting (although I didn’t see them at WAE). While they all seem to be in their infancy, I expect some of them will “grow up” to be valuable tools for growers.

The one thing for sure is that they all increase the value of having a Wireless Farm Network like AyrMesh.

Two last notes about WAE: first, as shown at left, there are a LOT of people who come to the show. Not all are farmers, but most are connected to the ag industry in some way. Second, as shown at right, you see stuff here I don’t think you’ll see anywhere else, like these berry and grape harvesters. I think it’s a good day when you walk past something that makes you say, “What in the world is THAT???” We’re definitely not in Minnesota any more…

The hard part of wireless networking: the wires.

It’s actually an old joke in the wireless networking world: what’s the worst part of wireless networking? The wires!

(OK, it’s an old dumb joke…)

While having WiFi all over the farm is incredibly useful, the only way to make it happen is using Ethernet cables. While Ethernet cables are very simple devices, there are an amazing number of variations and types of Ethernet cables, an choosing the wrong ones (or using them poorly) can cost you time and money.

What is an Ethernet cable?

Courtesy of WikiMedia

Ethernet cables all have some common characteristics: they contain 4 pairs of wires, with each pair twisted around each other (so they are called “twisted-pair” cables). They have an outer sheath to protect the wires inside and they use RJ-45 connectors to connect to networking devices.

The 4 pairs of wires inside the sheath are usually colored green, brown, blue, and orange – one solid and one striped for each color. The wires are usually 100{8fd1ffa65f67a2e931916b3c1288d51eed07dc30586a565c92d055673de7c64e} copper, but some cheaper cables are made of alloys. Alloy cable works OK for short lengths, but should not be used for cables longer than 25 feet. There is sometimes an uninsulated wire running down the middle of the cable called a “drain wire” – this is meant to provide a common ground for the equipment the cable is connected to.

The wires are usually about 24 gauge (AWG), but some cheaper cables use 26 gauge wire, and some more expensive cables use 22 gauge wire. Obviously, the bigger the wire the better, as long as it’s pure copper, but bigger wire also makes heavier cables. It makes a difference if you’re hauling it up a ladder, believe me.

Kinds of Ethernet Cables

Under the sheath, some cables have a shield made of metallic braid or foil. This shield keeps outside noise from penetrating the cable and disrupting the signal on the wires. Unshielded cables are designated as “UTP” (Unshielded Twisted Pair), while shielded cables are designated “STP” (Shielded Twisted Pair). Our experience shows that any cable over 25 feet should be shielded to prevent corruption of the data on the wires and maintain the speed of the data.

You will see, shopping for Ethernet cables, that there are several “Categories” of cable – Cat 5, Cat 5e, and Cat 6 are the common ones available now. The differences are in the speed rating of the cables – Cat 5 can pass data at 10 Mbps or 100 Mbps, Cat 5e can pass data at 10, 100, or 1000 Mbps, and Cat 6 can go up to 10 Gbps. Any of these will work well with AyrMesh equipment – we usually buy Cat5e cables because they are less expensive and widely available. The main physical differences in the cables is how tightly the wire pairs are twisted together.

Finally, the sheath itself can differ quite widely. The normal sheath is usually a form of polyolefin, which does not burn easily. “Plenum-rated” and “Riser-rated” sheaths are coated with a low-smoke PVC, which makes them even more flameproof and reduces the toxicity of the smoke if they do catch on fire. “Direct burial” cables generally have a very thick and heavy sheath, and they may contain a gel that prevents a nick or cut in the cable from admitting water into the cable. Obviously, if water gets into the cable, the wires can corrode and the cable will go bad, but direct burial cables are usually very stiff and very heavy, making them extremely difficult to work with.

Whichever cable you choose, it is imperative that you handle it correctly. Because the cable consists of a bunch of small wires, it is really no stronger than any of those wires. It’s very easy to get a kink in a cable when you’re pulling it through a hole, for instance, and break one of the wires. When that happens, the cable is generally useless.

General Guidelines for Ethernet cables used with AyrMesh products

  • Make sure the cables are all-copper and shielded (STP) if they’re 25 feet or longer.
  • Try to get 24 or 22 AWG wires in the cable.
  • Get plenum-rated or riser-rated cables for use indoors, but don’t use direct burial cables unless you’re going to bury them – they’re too hard to manage.
  • ALWAYS leave a “drip loop” when you’re bringing a cable run from outside to inside a building so water doesn’t run down the cable and ruin equipment!
  • Be VERY careful pulling cables – they are more fragile than they seem!

AyrMesh for Precision Ag – collecting precision data from cab monitors

Lots of data here…

Both of the founders of Ayrstone Productivity have backgrounds in precision agriculture, and one of the motivations we had in starting Ayrstone was to help growers access and use the data generated by all those in-cab monitors by giving them a way to capture all that data wirelessly. The information on those computers is a potential goldmine if you can use it quickly and easily to make smarter decisions about your operation.

When we were doing research about data collection, however, we learned that the vast majority of growers just left the CF cards in the cab monitors all season, because it was just too much bother to pull out the card, bring it in, out it on the computer, dump the data, store it (so you can find it again), and then remember to take it back out and put it back in the monitor before you go out to work again. Some vendors were starting to put cellular modems into their cab computers, but they are expensive in the first place and carry a pretty hefty monthly service fee with them. Furthermore, there are pretty substantial chunks of rural America without good cellular data service (which is usually separate from the voice service signal).

We proposed that a mesh WiFi network (like the AyrMesh network) could be a much more effective way to collect that data so it can be used for decision support. It can be extended wherever it needs to go for data collection, it doesn’t carry a monthly charge, and a WiFi adapter, even a high-power outdoor one, is much less expensive than a cellular modem.

Adam Gittins of HTSag has an interesting and thought-provoking blog post about collecting harvest data off his AgLeader console with the new AgFinity WiFi adapter. He is even able to see his harvest results when he’s not on the combine!

Thank you to Adam Gittins for this image

A little technical talk about WiFi

Adam Gittins has published another terrific post on his Precision Ag Explained blog about problems he ran into getting his AyrMesh network up and running.

It reminds me that WiFi isn’t entirely straightforward, and some explanations of the vagaries are in order.

As Adam points out, interference is potentially a huge problem on WiFi. One problem is that the 2.4 GHz. WiFi band was partitioned out into 11 channels (in the U.S. and Canada), but most of those channels actually OVERLAP each other. There are only THREE DISTINCT CHANNELS: 1, 6, and 11 – all the other channels overlap at least one of these three (and each other). For a good explanation with graphics, I always recommend Wikipedia.

As he points out, if you have your “indoor” WiFi and your “outdoor” WiFi on the same channel, they’ll interfere with each other, reducing the range and bandwidth of both. Even if they are less than five channels apart this will happen to some degree. The AyrMesh network always comes by default on channel 6, so you can either change your home router’s channel to 1 or 11, or change the AyrMesh channel using your account on AyrMesh.com.

InSSIDer – courtesy of MetaGeek

We use and recommend a couple of tools to help discover WiFi interference. InSSIDer for Home is a free program that run on Windows, Mac, or Android, and shows all of the WiFi Access Points in range of the computer and a pretty good estimate of the signal strength of those Access Points. (NOTE: It has recently been pointed out that getting InSSIDer for Home from the Mac App Store actually costs $4.99)

WiFi Analyzer for Android, Courtesy of farproc

WiFi Analyzer is another free app that runs on Android. It’s a little simpler and quicker than InSSIDer, and has become my “go-to” solution for taking a “quick look around” on my phone.

It’s worth noting that there is no analogous app for the iPhone because Apple doesn’t allow direct access to the WiFi card. However, there are similar apps available if your iPhone is jailbroken.

Chanalyzer Spectrum Analysis, courtesy of Metageek

Just to make it a bit more interesting, however, I have to point out one more fact: WiFi is far from being the only thing using the 2.4 GHz radio band. Cordless phones, baby monitors, wireless surveillance cameras, certain radars, and microwave ovens all use the same spectrum, so they can all potentially interfere with your WiFi. This is, in fact, precisely why Metageek gives away InSSIDer – they sell tools called “Spectrum Analyzers” – their “Wi-Spy” Spectrum Analyzers are excellent and relatively inexpensive. They can show not just WiFi interference, but all the interference in the 2.4 GHz. band. They even offer a very nice “Wi-Spy mini” bundled with their “InSSIDer for Office” product for only $199.

You probably won’t need a spectrum analyzer for your AyrMesh network. Out in the country there’s very little interference, and it takes a while to learn how to use a spectrum analyzer effectively, even with Metageek’s excellent software.

However, getting a copy of InSSIDer and/or WiFi Analyzer is something I recommend to everyone who’s curious about their local WiFi environment.

New Ayrstone Product: the AyrMesh Receiver

Today we’re announcing a new product in the Ayrstone AyrMesh line: the AyrMesh Receiver.

The AyrMesh Receiver is actually, of course, more than a receiver – it transmits and receives data – but it is designed as a simple, low-cost way to put one or more “wired” (Ethernet) devices onto an AyrMesh network. It is very similar to our AyrMesh Hub, but with a couple of important differences:

  1. The AyrMesh Receiver connects to the Hub’s WiFi signal, not the wireless mesh signal.
  2. The AyrMesh Receiver does not create its own WiFi access point – it is a client device only
  3. The AyrMesh Receiver uses a directional antenna for maximum range – it can be positioned up to 2 miles away from an AyrMesh Hub (optimal conditions).

Typical uses for the AyrMesh Receiver include:

  1. Using high-end IP cameras or other network devices that do not have WiFi
  2. Bringing the AyrMesh network inside of metal buildings – an AyrMesh Receiver can be placed on the outside of the building and devices inside can be connected to the LAN port of the receiver. You can even put a WiFi access point inside the building so you have WiFi indoors as well as outdoors.
  3. Connecting devices like network-enabled weather stations in more distant fields – since the AyrMesh Receiver can be up to 2 miles from your furthest Hub, you can now include areas in your network that were previously unreachable.

The AyrMesh Receiver is available now from Ayrstone – please see our website for details.

Welcome to the Ayrstone Blog!

This is me, but I’ll probably never look this good again.

This is what it’s about: Ayrstone on the farm. This is Matt Hughes’s farm in IL

This is a blog about Ayrstone, our products, networking, particularly wireless networking, the internet, farm/ranch management, and whatever else we find interesting. The primary author is Bill Moffitt, President and Chief technical guy for Ayrstone Productivity.

As Ayrstone customers who have spoken to me can attest, my interests are many and varied, but they always circle back to ways to get things done better, cheaper, safer, and more effectively. I am a strong proponent of technology, but I’m not really what you might call an “enthusiast.” I think of myself more as a crash-test dummy: I want to try new things, see what the potential is, and then talk about what I find (good or bad). The nice thing about this is, I hope, I can find things that are genuinely helpful. The bad part, of course, is that you may not always agree with my assessment. But, of course, that’s what makes this interesting: I expect some lively comments and discussions about the relative merits of different approaches here.

Just so you know what to expect, I’m a “machine gun” writer: I’ll go a long time without writing anything, and then I’ll put up several posts in rapid succession.

I welcome your comments, both positive and negative. This world of networking on the farm has a lot of big, new opportunities, and I hope I can help you make the most of it.

If so, I’ll have done my job.